package com.ruoyi.ngCalTools.service; import com.ruoyi.ngCalTools.model.GasProps; import com.ruoyi.ngCalTools.utils.GasConstants; import org.springframework.stereotype.Service; @Service public class DetailService { private static final double RGASKJ = 8.314510e-3; // 成员变量转换 // 组件数量 private int iNCC; // 组件ID数组,长度为21 private int[] aiCID = new int[21]; // 五个历史变量,用于在重复计算时提高效率 // 上一次计算的混合物ID double dOldMixID; // 上一次计算的Pb值 double dOldPb; // 上一次计算的Tb值 double dOldTb; // 上一次计算的Pf值 double dOldPf; // 上一次计算的Tf值 double dOldTf; // 来自表4第1列的EOS参数 // 长度为58的数组adAn double[] adAn = new double[58]; // 长度为58的数组adUn double[] adUn = new double[58]; // 来自表5的特征参数 // 第i个组件的分子量 double[] dMri = new double[21]; // 第i个组件的特征能量参数 double[] dEi = new double[21]; // 第i个组件的尺寸参数 - m^3/kg-mol ^1/3 double[] dKi = new double[21]; // 取向参数 double[] dGi = new double[21]; // 四极矩参数 double[] dQi = new double[21]; // 高温参数 double[] dFi = new double[21]; // 偶极矩参数 double[] dSi = new double[21]; // 关联参数 double[] dWi = new double[21]; // 维里系数能量二元相互作用参数 double[][] dEij = new double[21][21]; // 共形能量的二元相互作用参数 double[][] dUij = new double[21][21]; // 尺寸的二元相互作用参数 double[][] dKij = new double[21][21]; // 取向的二元相互作用参数 double[][] dGij = new double[21][21]; // 表6常量 double[][] adTable6Eij = new double[21][21]; // 表6常量 double[][] adTable6Uij = new double[21][21]; // 表6常量 double[][] adTable6Kij = new double[21][21]; // 表6常量 double[][] adTable6Gij = new double[21][21]; double[] adTable5Qi = new double[21]; // table 5 constants double[] adTable5Fi = new double[21]; // table 5 constants double[] adTable5Si = new double[21]; // table 5 constants double[] adTable5Wi = new double[21]; // table 5 constants // 组件i的摩尔分数数组,长度为21 double[] dXi = new double[21]; // 由pdetail()方法计算得到的压力 double dPCalc; // 当前温度 double dT; // 当前压力 double dP; // 在温度T和压力P下的摩尔密度 double dRhoTP; // 第二维里系数B double dB; // 用于计算B的18个系数的数组 double[] adBcoef = new double[18]; // 密度系数的函数数组,长度为58 double[] adFn = new double[58]; // 用于3个导数的修正系数数组,长度为58 double[] fx = new double[58]; // 混合能量参数 double dU; // 混合尺寸参数的三次方 double dKp3; // 混合取向参数 double dW; // 混合四极矩参数的平方 double dQp2; // 高温参数 double dF; // 摩尔密度 double dRho; // 在braket函数中使用的低密度 double dRhoL; // 在braket函数中使用的高密度 double dRhoH; // 在braket函数中使用的低压 double dPRhoL; // 在braket函数中使用的高压 double dPRhoH; // 也用于高级流体性质计算的公共变量 // 当前压缩因子 public double dZ; // Z对T的一阶偏导数 public double ddZdT; // Z对T的二阶偏导数 public double dd2ZdT2; // Z对摩尔密度的一阶偏导数 public double ddZdD; // B对T的一阶偏导数 public double ddBdT; // B对T的二阶偏导数 public double dd2BdT2; // 构造函数 public DetailService() { //initialize history-sensitive variables dOldMixID = 0.0; // mixture ID from previous calc dOldPb = 0.0; // base pressure from previous calc dOldTb = 0.0; // base temperature from previous calc dOldPf = 0.0; // flowing pressure from previous calc dOldTf = 0.0; // flowing temperature from previous calc //initialize gas component array used within this class for (int i = 0; i < GasConstants.NUMBEROFCOMPONENTS; i++) dXi[i] = 0; // function table() populates tables of static constants table(); } public void run(GasProps gasProps) { // 实现转换后的逻辑 int i; // Check for gas composition change gasProps.bForceUpdate = (gasProps.bForceUpdate || compositionChange(gasProps)); // assign component IDs and values if (gasProps.bForceUpdate) { iNCC = -1; for (i = 0; i < GasConstants.NUMBEROFCOMPONENTS; i++) { if (gasProps.adMixture[i] > 0.0) { iNCC = iNCC + 1; aiCID[iNCC] = i; dXi[iNCC] = gasProps.adMixture[i]; } } iNCC = iNCC + 1; //calculate composition dependent quantities; ported from original //FORTRAN functions paramdl() and chardl() paramdl(); chardl(gasProps); } //evaluate T & P dependent parms at base pressure and temperature, //but only if necessary if (Math.abs(gasProps.dPb - dOldPb) > GasConstants.P_CHG_TOL || Math.abs(gasProps.dTb - dOldTb) > GasConstants.T_CHG_TOL || gasProps.bForceUpdate) { dP = gasProps.dPb * 1.0e-6; // AGA 8 uses MPa internally dT = gasProps.dTb; //calculate temperature dependent parms temp(); //determine molar density ddetail(gasProps); gasProps.dDb = dRho; //determine compressibility gasProps.dZb = zdetail(dRho); // calculate mass density dRhoTP = (dP * gasProps.dMrx) / (gasProps.dZb * GasConstants.RGASKJ * dT); //calculate relative density relativedensity(gasProps); //copy density to data structure member gasProps.dRhob = dRhoTP; //update history and clear the ForceUpdate flag dOldTb = gasProps.dTb; dOldPb = gasProps.dPb; gasProps.bForceUpdate = true; } //repeat the process using flowing conditions //begin by loading P & T from data structure //AGA 8 uses MPa internally; converted from Pa here dP = gasProps.dPf * 1.0e-6; dT = gasProps.dTf; //check whether to calculate temperature dependent parms if (Math.abs(gasProps.dTf - dOldTf) > GasConstants.T_CHG_TOL || gasProps.bForceUpdate) { //if temperature has changed, we must follow through temp(); //force ForceUpdate flag to true gasProps.bForceUpdate = true; } // check whether to calculate other parms if (Math.abs(gasProps.dPf - dOldPf) > GasConstants.P_CHG_TOL || gasProps.bForceUpdate) { //determine molar density ddetail(gasProps); gasProps.dDf = dRho; //determine compressibility gasProps.dZf = zdetail(dRho); //calculate mass density dRhoTP = (dP * gasProps.dMrx) / (gasProps.dZf * GasConstants.RGASKJ * dT); //copy density to data structure member gasProps.dRhof = dRhoTP; //update history dOldTf = gasProps.dTf; dOldPf = gasProps.dPf; } //calculate legacy factor Fpv //NOTE: as implemented here, Fpv is not constrained to 14.73 psi and 60F if (gasProps.dZb > 0.0 && gasProps.dZf > 0.0) { gasProps.dFpv = Math.sqrt(gasProps.dZb / gasProps.dZf); } else { //if either Zb or Zf is zero at this point, we have a serious unexpected problem gasProps.dFpv = gasProps.dZb = gasProps.dZf = 0.0; gasProps.lStatus = GasConstants.GENERAL_CALCULATION_FAILURE; } //we are now up to date; toggle off the update flag gasProps.bForceUpdate = false; // 其他计算逻辑... } private boolean compositionChange(GasProps gasProps) { double dMixID = 0.0; for (int i = 0; i < GasConstants.NUMBEROFCOMPONENTS; i++) { dMixID += ((i + 2) * gasProps.adMixture[i]); }if (dMixID != dOldMixID) { dOldMixID = dMixID; return true; } return false; } public void paramdl() { int j, k; // table 5 parameters; declared locally to this function double[] adTable5Mri; double[] adTable5Ei; double[] adTable5Ki; double[] adTable5Gi; // 初始化adTable5Mri数组 adTable5Mri = new double[]{16.0430, 28.0135, 44.0100, 30.0700, 44.0970, 18.0153, 34.0820, 2.0159, 28.0100, 31.9988, 58.1230, 58.1230, 72.1500, 72.1500, 86.1770, 100.2040, 114.2310, 128.2580, 142.2850, 4.0026, 39.9480}; // 初始化adTable5Ei数组 adTable5Ei = new double[]{151.318300, 99.737780, 241.960600, 244.166700, 298.118300, 514.015600, 296.355000, 26.957940, 105.534800, 122.766700, 324.068900, 337.638900, 365.599900, 370.682300, 402.636293, 427.722630, 450.325022, 470.840891, 489.558373, 2.610111, 119.629900}; // 初始化adTable5Ki数组 adTable5Ki = new double[]{0.4619255, 0.4479153, 0.4557489, 0.5279209, 0.5837490, 0.3825868, 0.4618263, 0.3514916, 0.4533894, 0.4186954, 0.6406937, 0.6341423, 0.6738577, 0.6798307, 0.7175118, 0.7525189, 0.7849550, 0.8152731, 0.8437826, 0.3589888, 0.4216551}; // 初始化adTable5Gi数组 adTable5Gi = new double[]{0.000000, 0.027815, 0.189065, 0.079300, 0.141239, 0.332500, 0.088500, 0.034369, 0.038953, 0.021000, 0.256692, 0.281835, 0.332267, 0.366911, 0.289731, 0.337542, 0.383381, 0.427354, 0.469659, 0.000000, 0.000000}; //most of the table 5 parameters are zero for (j = 0; j < GasConstants.NUMBEROFCOMPONENTS; j++) { adTable5Qi[j] = 0.0; adTable5Fi[j] = 0.0; adTable5Si[j] = 0.0; adTable5Wi[j] = 0.0; } //a small number of exceptions adTable5Qi[2] = 0.690000; adTable5Qi[5] = 1.067750; adTable5Qi[6] = 0.633276; adTable5Fi[7] = 1.0000; adTable5Si[5] = 1.5822; adTable5Si[6] = 0.3900; adTable5Wi[5] = 1.0000; // setup characterization parameters for non-zero components for (j = iNCC - 1; j >= 0; j--) { dMri[j] = adTable5Mri[aiCID[j]]; dKi[j] = adTable5Ki[aiCID[j]]; } for (j = 0; j < iNCC; j++) { dGi[j] = adTable5Gi[aiCID[j]]; dEi[j] = adTable5Ei[aiCID[j]]; } for (j = 0; j < iNCC; j++) { dQi[j] = adTable5Qi[aiCID[j]]; dFi[j] = 0.0; if (aiCID[j] == 7) dFi[j] = adTable5Fi[7]; dSi[j] = adTable5Si[aiCID[j]]; dWi[j] = adTable5Wi[aiCID[j]]; } // Binary interaction parameters for arrays: eij, kij, wij, uij for (j = 0; j < iNCC; j++) { for (k = j; k < iNCC; k++) { dUij[j][k] = adTable6Uij[aiCID[j]][aiCID[k]]; dKij[j][k] = adTable6Kij[aiCID[j]][aiCID[k]]; dEij[j][k] = adTable6Eij[aiCID[j]][aiCID[k]]; dGij[j][k] = adTable6Gij[aiCID[j]][aiCID[k]]; } } } public void chardl(GasProps gasProps) { //variables local to function int i, j; double tmfrac, k5p0, k2p5, u5p0, u2p5, q1p0; double Xij, Eij, Gij, e0p5, e2p0, e3p0, e3p5, e4p5, e6p0; double e7p5, e9p5, e12p0, e12p5; double e11p0, s3; //normalize mole fractions and calculate molar mass tmfrac = 0.0; for (j = 0; j < iNCC; j++) { tmfrac = tmfrac + dXi[j]; } for (j = 0; j < iNCC; j++) { dXi[j] = dXi[j] / tmfrac; } // reset virial coefficients for (j = 0; j < 18; j++) { adBcoef[j] = 0.0; } // initialize a key subset of the local variables k5p0 = 0.0; k2p5 = 0.0; u5p0 = 0.0; u2p5 = 0.0; dW = 0.0; q1p0 = 0.0; dF = 0.0; // calculate gas molecular weight gasProps.dMrx = 0.0; for (j = 0; j < iNCC; j++) { gasProps.dMrx = gasProps.dMrx + dXi[j] * dMri[j]; } // calculate the composition-dependent quantities, applying a nested loop for (i = 0; i < iNCC; i++) { k2p5 = k2p5 + dXi[i] * dKi[i] * dKi[i] * Math.sqrt(dKi[i]); u2p5 = u2p5 + dXi[i] * dEi[i] * dEi[i] * Math.sqrt(dEi[i]); dW = dW + dXi[i] * dGi[i]; q1p0 = q1p0 + dXi[i] * dQi[i]; dF = dF + dXi[i] * dXi[i] * dFi[i]; for (j = i; j < iNCC; j++) { if (i != j) Xij = 2.0 * dXi[i] * dXi[j]; else Xij = dXi[i] * dXi[j]; // proceed while skipping interaction terms which equal 1.0 if (dKij[i][j] != 1.0) k5p0 += Xij * (Math.pow(dKij[i][j], 5.0) - 1.0) * Math.pow((Math.pow(dKi[i], 5.0) * Math.pow(dKi[j], 5.0)), 0.5); if (dUij[i][j] != 1.0) u5p0 += Xij * (Math.pow(dUij[i][j], 5.0) - 1.0) * Math.pow((Math.pow(dEi[i], 5.0) * Math.pow(dEi[j], 5.0)), 0.5); if (dGij[i][j] != 1.0) dW += Xij * (dGij[i][j] - 1.0) * ((dGi[i] + dGi[j]) / 2.0); // calculate terms required for second virial coefficient, B Eij = dEij[i][j] * Math.sqrt(dEi[i] * dEi[j]); Gij = dGij[i][j] * (dGi[i] + dGi[j]) / 2.0; e0p5 = Math.sqrt(Eij); e2p0 = Eij * Eij; e3p0 = Eij * e2p0; e3p5 = e3p0 * e0p5; e4p5 = Eij * e3p5; e6p0 = e3p0 * e3p0; e11p0 = e4p5 * e4p5 * e2p0; e7p5 = e4p5 * Eij * e2p0; e9p5 = e7p5 * e2p0; e12p0 = e11p0 * Eij; e12p5 = e12p0 * e0p5; s3 = Xij * Math.pow((Math.pow(dKi[i], 3.0) * Math.pow(dKi[j], 3)), 0.5); adBcoef[0] = adBcoef[0] + s3; adBcoef[1] = adBcoef[1] + s3 * e0p5; adBcoef[2] = adBcoef[2] + s3 * Eij; adBcoef[3] = adBcoef[3] + s3 * e3p5; adBcoef[4] = adBcoef[4] + s3 * Gij / e0p5; adBcoef[5] = adBcoef[5] + s3 * Gij * e4p5; adBcoef[6] = adBcoef[6] + s3 * dQi[i] * dQi[j] * e0p5; adBcoef[7] = adBcoef[7] + s3 * dSi[i] * dSi[j] * e7p5; adBcoef[8] = adBcoef[8] + s3 * dSi[i] * dSi[j] * e9p5; adBcoef[9] = adBcoef[9] + s3 * dWi[i] * dWi[j] * e6p0; adBcoef[10] = adBcoef[10] + s3 * dWi[i] * dWi[j] * e12p0; adBcoef[11] = adBcoef[11] + s3 * dWi[i] * dWi[j] * e12p5; adBcoef[12] = adBcoef[12] + s3 * dFi[i] * dFi[j] / e6p0; adBcoef[13] = adBcoef[13] + s3 * e2p0; adBcoef[14] = adBcoef[14] + s3 * e3p0; adBcoef[15] = adBcoef[15] + s3 * dQi[i] * dQi[j] * e2p0; adBcoef[16] = adBcoef[16] + s3 * e2p0; adBcoef[17] = adBcoef[17] + s3 * e11p0; } } //grab the first 18 constants from table 4, completing Bnij for (i = 0; i < 18; i++) adBcoef[i] *= adAn[i]; //final products of chardl are mixture size parameter K, energy parameter U, //and quadrupole parameter Q dKp3 = Math.pow((k5p0 + k2p5 * k2p5), 0.6); dU = Math.pow((u5p0 + u2p5 * u2p5), 0.2); dQp2 = q1p0 * q1p0; } // 其他方法转换... public void table() { int j, k; GasProps gasProps; // 58 constants from table 4 - column A(n) adAn[0] = 0.153832600; adAn[1] = 1.341953000; adAn[2] = -2.998583000; adAn[3] = -0.048312280; adAn[4] = 0.375796500; adAn[5] = -1.589575000; adAn[6] = -0.053588470; adAn[7] = 0.886594630; adAn[8] = -0.710237040; adAn[9] = -1.471722000; adAn[10] = 1.321850350; adAn[11] = -0.786659250; adAn[12] = 2.29129E-09; adAn[13] = 0.157672400; adAn[14] = -0.436386400; adAn[15] = -0.044081590; adAn[16] = -0.003433888; adAn[17] = 0.032059050; adAn[18] = 0.024873550; adAn[19] = 0.073322790; adAn[20] = -0.001600573; adAn[21] = 0.642470600; adAn[22] = -0.416260100; adAn[23] = -0.066899570; adAn[24] = 0.279179500; adAn[25] = -0.696605100; adAn[26] = -0.002860589; adAn[27] = -0.008098836; adAn[28] = 3.150547000; adAn[29] = 0.007224479; adAn[30] = -0.705752900; adAn[31] = 0.534979200; adAn[32] = -0.079314910; adAn[33] = -1.418465000; adAn[34] = -5.99905E-17; adAn[35] = 0.105840200; adAn[36] = 0.034317290; adAn[37] = -0.007022847; adAn[38] = 0.024955870; adAn[39] = 0.042968180; adAn[40] = 0.746545300; adAn[41] = -0.291961300; adAn[42] = 7.294616000; adAn[43] = -9.936757000; adAn[44] = -0.005399808; adAn[45] = -0.243256700; adAn[46] = 0.049870160; adAn[47] = 0.003733797; adAn[48] = 1.874951000; adAn[49] = 0.002168144; adAn[50] = -0.658716400; adAn[51] = 0.000205518; adAn[52] = 0.009776195; adAn[53] = -0.020487080; adAn[54] = 0.015573220; adAn[55] = 0.006862415; adAn[56] = -0.001226752; adAn[57] = 0.002850908; // 58 constants from table 4 - column Un adUn[0] = 0.0; adUn[1] = 0.5; adUn[2] = 1.0; adUn[3] = 3.5; adUn[4] = -0.5; adUn[5] = 4.5; adUn[6] = 0.5; adUn[7] = 7.5; adUn[8] = 9.5; adUn[9] = 6.0; adUn[10] = 12.0; adUn[11] = 12.5; adUn[12] = -6.0; adUn[13] = 2.0; adUn[14] = 3.0; adUn[15] = 2.0; adUn[16] = 2.0; adUn[17] = 11.0; adUn[18] = -0.5; adUn[19] = 0.5; adUn[20] = 0.0; adUn[21] = 4.0; adUn[22] = 6.0; adUn[23] = 21.0; adUn[24] = 23.0; adUn[25] = 22.0; adUn[26] = -1.0; adUn[27] = -0.5; adUn[28] = 7.0; adUn[29] = -1.0; adUn[30] = 6.0; adUn[31] = 4.0; adUn[32] = 1.0; adUn[33] = 9.0; adUn[34] = -13.0; adUn[35] = 21.0; adUn[36] = 8.0; adUn[37] = -0.5; adUn[38] = 0.0; adUn[39] = 2.0; adUn[40] = 7.0; adUn[41] = 9.0; adUn[42] = 22.0; adUn[43] = 23.0; adUn[44] = 1.0; adUn[45] = 9.0; adUn[46] = 3.0; adUn[47] = 8.0; adUn[48] = 23.0; adUn[49] = 1.5; adUn[50] = 5.0; adUn[51] = -0.5; adUn[52] = 4.0; adUn[53] = 7.0; adUn[54] = 3.0; adUn[55] = 0.0; adUn[56] = 1.0; adUn[57] = 0.0; //Most of the tables are filled with 1.0 or 0.0 //It is up to us to set non-zero values for (j = 0; j < GasConstants.NUMBEROFCOMPONENTS; j++) { for (k = j; k < GasConstants.NUMBEROFCOMPONENTS; k++) { adTable6Eij[j][k] = 1.0; adTable6Uij[j][k] = 1.0; adTable6Kij[j][k] = 1.0; adTable6Gij[j][k] = 1.0; } } //Lnsert the 132 items of non-zero and non-1.0 data //This looks more cumbersome than it is, considering table 6 has 1764 members adTable6Eij[0][1] = 0.971640; adTable6Eij[0][2] = 0.960644; adTable6Eij[0][4] = 0.994635; adTable6Eij[0][5] = 0.708218; adTable6Eij[0][6] = 0.931484; adTable6Eij[0][7] = 1.170520; adTable6Eij[0][8] = 0.990126; adTable6Eij[0][10] = 1.019530; adTable6Eij[0][11] = 0.989844; adTable6Eij[0][12] = 1.002350; adTable6Eij[0][13] = 0.999268; adTable6Eij[0][14] = 1.107274; adTable6Eij[0][15] = 0.880880; adTable6Eij[0][16] = 0.880973; adTable6Eij[0][17] = 0.881067; adTable6Eij[0][18] = 0.881161; adTable6Eij[1][2] = 1.022740; adTable6Eij[1][3] = 0.970120; adTable6Eij[1][4] = 0.945939; adTable6Eij[1][5] = 0.746954; adTable6Eij[1][6] = 0.902271; adTable6Eij[1][7] = 1.086320; adTable6Eij[1][8] = 1.005710; adTable6Eij[1][9] = 1.021000; adTable6Eij[1][10] = 0.946914; adTable6Eij[1][11] = 0.973384; adTable6Eij[1][12] = 0.959340; adTable6Eij[1][13] = 0.945520; adTable6Eij[2][3] = 0.925053; adTable6Eij[2][4] = 0.960237; adTable6Eij[2][5] = 0.849408; adTable6Eij[2][6] = 0.955052; adTable6Eij[2][7] = 1.281790; adTable6Eij[2][8] = 1.500000; adTable6Eij[2][10] = 0.906849; adTable6Eij[2][11] = 0.897362; adTable6Eij[2][12] = 0.726255; adTable6Eij[2][13] = 0.859764; adTable6Eij[2][14] = 0.855134; adTable6Eij[2][15] = 0.831229; adTable6Eij[2][16] = 0.808310; adTable6Eij[2][17] = 0.786323; adTable6Eij[2][18] = 0.765171; adTable6Eij[3][4] = 1.022560; adTable6Eij[3][5] = 0.693168; adTable6Eij[3][6] = 0.946871; adTable6Eij[3][7] = 1.164460; adTable6Eij[3][11] = 1.013060; adTable6Eij[3][13] = 1.005320; adTable6Eij[4][7] = 1.034787; adTable6Eij[4][11] = 1.004900; adTable6Eij[6][14] = 1.008692; adTable6Eij[6][15] = 1.010126; adTable6Eij[6][16] = 1.011501; adTable6Eij[6][17] = 1.012821; adTable6Eij[6][18] = 1.014089; adTable6Eij[7][8] = 1.100000; adTable6Eij[7][10] = 1.300000; adTable6Eij[7][11] = 1.300000; adTable6Uij[0][1] = 0.886106; adTable6Uij[0][2] = 0.963827; adTable6Uij[0][4] = 0.990877; adTable6Uij[0][6] = 0.736833; adTable6Uij[0][7] = 1.156390; adTable6Uij[0][11] = 0.992291; adTable6Uij[0][13] = 1.003670; adTable6Uij[0][14] = 1.302576; adTable6Uij[0][15] = 1.191904; adTable6Uij[0][16] = 1.205769; adTable6Uij[0][17] = 1.219634; adTable6Uij[0][18] = 1.233498; adTable6Uij[1][2] = 0.835058; adTable6Uij[1][3] = 0.816431; adTable6Uij[1][4] = 0.915502; adTable6Uij[1][6] = 0.993476; adTable6Uij[1][7] = 0.408838; adTable6Uij[1][11] = 0.993556; adTable6Uij[2][3] = 0.969870; adTable6Uij[2][6] = 1.045290; adTable6Uij[2][8] = 0.900000; adTable6Uij[2][14] = 1.066638; adTable6Uij[2][15] = 1.077634; adTable6Uij[2][16] = 1.088178; adTable6Uij[2][17] = 1.098291; adTable6Uij[2][18] = 1.108021; adTable6Uij[3][4] = 1.065173; adTable6Uij[3][6] = 0.971926; adTable6Uij[3][7] = 1.616660; adTable6Uij[3][10] = 1.250000; adTable6Uij[3][11] = 1.250000; adTable6Uij[3][12] = 1.250000; adTable6Uij[3][13] = 1.250000; adTable6Uij[6][14] = 1.028973; adTable6Uij[6][15] = 1.033754; adTable6Uij[6][16] = 1.038338; adTable6Uij[6][17] = 1.042735; adTable6Uij[6][18] = 1.046966; adTable6Kij[0][1] = 1.003630; adTable6Kij[0][2] = 0.995933; adTable6Kij[0][4] = 1.007619; adTable6Kij[0][6] = 1.000080; adTable6Kij[0][7] = 1.023260; adTable6Kij[0][11] = 0.997596; adTable6Kij[0][13] = 1.002529; adTable6Kij[0][14] = 0.982962; adTable6Kij[0][15] = 0.983565; adTable6Kij[0][16] = 0.982707; adTable6Kij[0][17] = 0.981849; adTable6Kij[0][18] = 0.980991; adTable6Kij[1][2] = 0.982361; adTable6Kij[1][3] = 1.007960; adTable6Kij[1][6] = 0.942596; adTable6Kij[1][7] = 1.032270; adTable6Kij[2][3] = 1.008510; adTable6Kij[2][6] = 1.007790; adTable6Kij[2][14] = 0.910183; adTable6Kij[2][15] = 0.895362; adTable6Kij[2][16] = 0.881152; adTable6Kij[2][17] = 0.867520; adTable6Kij[2][18] = 0.854406; adTable6Kij[3][4] = 0.986893; adTable6Kij[3][6] = 0.999969; adTable6Kij[3][7] = 1.020340; adTable6Kij[6][14] = 0.968130; adTable6Kij[6][15] = 0.962870; adTable6Kij[6][16] = 0.957828; adTable6Kij[6][17] = 0.952441; adTable6Kij[6][18] = 0.948338; adTable6Gij[0][2] = 0.807653; adTable6Gij[0][7] = 1.957310; adTable6Gij[1][2] = 0.982746; adTable6Gij[2][3] = 0.370296; adTable6Gij[2][5] = 1.673090; } public void bvir() { //variables local to function double t0p5, t2p0, t3p0, t3p5, t4p5, t6p0, t11p0; double t7p5, t9p5, t12p0, t12p5; double t1p5, t4p0; double[] Bx = new double[18]; int i; //reset B and partial devivatives to 0.0 dB = ddBdT = dd2BdT2 = 0.0; //pre-calculate Math .Powers of T t0p5 = Math.sqrt(dT); t2p0 = dT * dT; t3p0 = dT * t2p0; t3p5 = t3p0 * t0p5; t4p5 = dT * t3p5; t6p0 = t3p0 * t3p0; t11p0 = t4p5 * t4p5 * t2p0; t7p5 = t6p0 * dT * t0p5; t9p5 = t7p5 * t2p0; t12p0 = t9p5 * t0p5 * t2p0; t12p5 = t12p0 * t0p5; t1p5 = dT * t0p5; t4p0 = t2p0 * t2p0; //coefficients for B Bx[0] = adBcoef[0]; Bx[1] = adBcoef[1] / t0p5; Bx[2] = adBcoef[2] / dT; Bx[3] = adBcoef[3] / t3p5; Bx[4] = adBcoef[4] * t0p5; Bx[5] = adBcoef[5] / t4p5; Bx[6] = adBcoef[6] / t0p5; Bx[7] = adBcoef[7] / t7p5; Bx[8] = adBcoef[8] / t9p5; Bx[9] = adBcoef[9] / t6p0; Bx[10] = adBcoef[10] / t12p0; Bx[11] = adBcoef[11] / t12p5; Bx[12] = adBcoef[12] * t6p0; Bx[13] = adBcoef[13] / t2p0; Bx[14] = adBcoef[14] / t3p0; Bx[15] = adBcoef[15] / t2p0; Bx[16] = adBcoef[16] / t2p0; Bx[17] = adBcoef[17] / t11p0; //sum up the pieces for second virial coefficient, B for (i = 0; i < 18; i++) { dB += Bx[i]; } //calculate terms for first derivative of B, wrt T for (i = 0; i < 18; i++) { if (adUn[i] != 0) Bx[i] *= adUn[i]; } //sum up the pieces of first derivative of B //note div by dT; changes exponent of T for (i = 0; i < 18; i++) { if (adUn[i] != 0) ddBdT += Bx[i] / dT; } //sign change here ddBdT = -ddBdT; //calculate terms for second derivative of B, wrt T for (i = 0; i < 18; i++) { if (adUn[i] != 0 && adUn[i] != -1.0) Bx[i] *= (adUn[i] + 1.0); } //sum up the pieces of second derivative of B //note division by dT, thereby changing the exponent of T //loop will ignore Bx[0] which is = 0.0 for (i = 0; i < 18; i++) { if (adUn[i] != 0 && adUn[i] != -1.0) dd2BdT2 += Bx[i] / t2p0; } } public void temp() { // Note: this function was ported from the AGA Report No.8 FORTRAN listing, // retaining as much of the original content as possible // variables local to function double tr0p5, tr1p5, tr2p0, tr3p0, tr4p0, tr5p0, tr6p0; double tr7p0, tr8p0, tr9p0, tr11p0, tr13p0, tr21p0; double tr22p0, tr23p0, tr; /*calculate second virial coefficient B*/ bvir(); // calculate adFn(12) through adFn(57) // adFn(0)-adFn(11) do not contribute to csm terms tr = dT / dU; tr0p5 = Math.sqrt(tr); tr1p5 = tr * tr0p5; tr2p0 = tr * tr; tr3p0 = tr * tr2p0; tr4p0 = tr * tr3p0; tr5p0 = tr * tr4p0; tr6p0 = tr * tr5p0; tr7p0 = tr * tr6p0; tr8p0 = tr * tr7p0; tr9p0 = tr * tr8p0; tr11p0 = tr6p0 * tr5p0; tr13p0 = tr6p0 * tr7p0; tr21p0 = tr9p0 * tr9p0 * tr3p0; tr22p0 = tr * tr21p0; tr23p0 = tr * tr22p0; adFn[12] = adAn[12] * dF * tr6p0; adFn[13] = adAn[13] / tr2p0; adFn[14] = adAn[14] / tr3p0; adFn[15] = adAn[15] * dQp2 / tr2p0; adFn[16] = adAn[16] / tr2p0; adFn[17] = adAn[17] / tr11p0; adFn[18] = adAn[18] * tr0p5; adFn[19] = adAn[19] / tr0p5; adFn[20] = adAn[20]; adFn[21] = adAn[21] / tr4p0; adFn[22] = adAn[22] / tr6p0; adFn[23] = adAn[23] / tr21p0; adFn[24] = adAn[24] * dW / tr23p0; adFn[25] = adAn[25] * dQp2 / tr22p0; adFn[26] = adAn[26] * dF * tr; adFn[27] = adAn[27] * dQp2 * tr0p5; adFn[28] = adAn[28] * dW / tr7p0; adFn[29] = adAn[29] * dF * tr; adFn[30] = adAn[30] / tr6p0; adFn[31] = adAn[31] * dW / tr4p0; adFn[32] = adAn[32] * dW / tr; adFn[33] = adAn[33] * dW / tr9p0; adFn[34] = adAn[34] * dF * tr13p0; adFn[35] = adAn[35] / tr21p0; adFn[36] = adAn[36] * dQp2 / tr8p0; adFn[37] = adAn[37] * tr0p5; adFn[38] = adAn[38]; adFn[39] = adAn[39] / tr2p0; adFn[40] = adAn[40] / tr7p0; adFn[41] = adAn[41] * dQp2 / tr9p0; adFn[42] = adAn[42] / tr22p0; adFn[43] = adAn[43] / tr23p0; adFn[44] = adAn[44] / tr; adFn[45] = adAn[45] / tr9p0; adFn[46] = adAn[46] * dQp2 / tr3p0; adFn[47] = adAn[47] / tr8p0; adFn[48] = adAn[48] * dQp2 / tr23p0; adFn[49] = adAn[49] / tr1p5; adFn[50] = adAn[50] * dW / tr5p0; adFn[51] = adAn[51] * dQp2 * tr0p5; adFn[52] = adAn[52] / tr4p0; adFn[53] = adAn[53] * dW / tr7p0; adFn[54] = adAn[54] / tr3p0; adFn[55] = adAn[55] * dW; adFn[56] = adAn[56] / tr; adFn[57] = adAn[57] * dQp2; } public void ddetail(GasProps gasProps) { int imax, i; double epsp, epsr, epsmin; double x1, x2, x3, y1, y2, y3; double delx, delprv, delmin, delbis, xnumer, xdenom, sgndel; double y2my3, y3my1, y1my2, boundn; //initialize convergence tolerances imax = 150; epsp = 1.0e-6; epsr = 1.0e-6; epsmin = 1.0e-7; dRho = 0.0; //call subroutine braket to bracket density solution braket(gasProps); //check value of "lStatus" returned from subroutine braket if (gasProps.lStatus == GasConstants.MAX_NUM_OF_ITERATIONS_EXCEEDED || gasProps.lStatus == GasConstants.NEGATIVE_DENSITY_DERIVATIVE) { return; } //set up to start Brent's method //x is the independent variable, y the dependent variable //delx is the current iteration change in x //delprv is the previous iteration change in x x1 = dRhoL; x2 = dRhoH; y1 = dPRhoL - dP; y2 = dPRhoH - dP; delx = x1 - x2; delprv = delx; //solution is bracketed between x1 and x2 //a third point x3 is introduced for quadratic interpolation x3 = x1; y3 = y1; for (i = 0; i < imax; i++) { //y3 must be opposite in sign from y2 so solution between x2,x3 if (y2 * y3 > 0.0) { x3 = x1; y3 = y1; delx = x1 - x2; delprv = delx; } //y2 must be value of y closest to y=0.0, then x2new=x2old+delx if (Math.abs(y3) < Math.abs(y2)) { x1 = x2; x2 = x3; x3 = x1; y1 = y2; y2 = y3; y3 = y1; } //delmin is minimum allowed step size for unconverged iteration delmin = epsmin * Math.abs(x2); //if procedure is not converging or if delprv is less than delmin //use bisection instead //delbis = 0.5d0*(x3 - x2) is the bisection delx delbis = 0.5 * (x3 - x2); // tests to select numerical method for current iteration if (Math.abs(delprv) < delmin || Math.abs(y1) < Math.abs(y2)) { // use bisection delx = delbis; delprv = delbis; } else { if (x3 != x1) { // use inverse quadratic interpolation y2my3 = y2 - y3; y3my1 = y3 - y1; y1my2 = y1 - y2; xdenom = -(y1my2) * (y2my3) * (y3my1); xnumer = x1 * y2 * y3 * (y2my3) + x2 * y3 * y1 * (y3my1) + x3 * y1 * y2 * (y1my2) - x2 * xdenom; } else { // use inverse linear interpolation xnumer = (x2 - x1) * y2; xdenom = y1 - y2; } // before calculating delx check delx=xnumer/xdenom is not out of bounds if (2.0 * Math.abs(xnumer) < Math.abs(delprv * xdenom)) { // procedure converging, use interpolation delprv = delx; delx = xnumer / xdenom; } else { // procedure diverging, use bisection delx = delbis; delprv = delbis; } } // check for convergence if ((Math.abs(y2) < epsp * dP) && (Math.abs(delx) < epsr * Math.abs(x2))) { dRho = x2 + delx; return; } //when unconverged, abs(delx) must be greater than delmin //minimum allowed magnitude of change in x2 is 1.0000009*delmin //sgndel, the sign of change in x2 is sign of delbis if (Math.abs(delx) < delmin) { sgndel = delbis / Math.abs(delbis); delx = 1.0000009 * sgndel * delmin; delprv = delx; } //final check to insure that new x2 is in range of old x2 and x3 //boundn is negative if new x2 is in range of old x2 and x3 boundn = delx * (x2 + delx - x3); if (boundn > 0.0) { // procedure stepping out of bounds, use bisection delx = delbis; delprv = delbis; } //relable variables for next iteration //x1new = x2old, y1new=y2old x1 = x2; y1 = y2; // next iteration values for x2, y2 x2 = x2 + delx; pdetail(x2); y2 = dPCalc - dP; } // ddetail: maximum number of iterations exceeded gasProps.lStatus = GasConstants.MAX_NUM_OF_ITERATIONS_EXCEEDED; dRho = x2; }// ddetail() public void braket(GasProps gasProps) { //variables local to function int imax, it; double del, rhomax, videal; double rho1, rho2, p1, p2; //initialize imax = 200; rho1 = 0.0; p1 = 0.0; rhomax = 1.0 / dKp3; if (dT > 1.2593 * dU) rhomax = 20.0 * rhomax; videal = GasConstants.RGASKJ * dT / dP; if (Math.abs(dB) < (0.167 * videal)) { rho2 = 0.95 / (videal + dB); } else { rho2 = 1.15 / videal; } del = rho2 / 20.0; // start iterative density search loop for (it = 0; it < imax; it++) { if (rho2 > rhomax && gasProps.lStatus != GasConstants.MAX_DENSITY_IN_BRAKET_EXCEEDED) { // density in braket exceeds maximum allowable density gasProps.lStatus = GasConstants.MAX_DENSITY_IN_BRAKET_EXCEEDED; del = 0.01 * (rhomax - rho1) + (dP / (GasConstants.RGASKJ * dT)) / 20.0; rho2 = rho1 + del; continue; } //calculate pressure p2 at density rho2 pdetail(rho2); p2 = dPCalc; //test value of p2 relative to p and relative to p1 if (p2 > dP) { //the density root is bracketed (p1
p) dRhoL = rho1; dPRhoL = p1; dRhoH = rho2; dPRhoH = p2; gasProps.lStatus = GasConstants.NORMAL; return; } else if (p2 > p1) { if (gasProps.lStatus == GasConstants.MAX_DENSITY_IN_BRAKET_EXCEEDED) del *= 2.0; rho1 = rho2; p1 = p2; rho2 = rho1 + del; continue; } else { //lStatus= NEGATIVE_DENSITY_DERIVATIVEindicates that //pressure has a negative density derivative, since p2 is less than //some previous pressure gasProps.lStatus = GasConstants.NEGATIVE_DENSITY_DERIVATIVE; dRho = rho1; return; } } // maximum number of iterations exceeded if we fall through the bottom gasProps.lStatus = GasConstants.MAX_NUM_OF_ITERATIONS_EXCEEDED; dRho = rho2; return; }// braket() public void pdetail(double dD) { dPCalc = zdetail(dD) * dD * GasConstants.RGASKJ * dT; }// pdetail() public double zdetail(double d) { // variables local to function double D1, D2, D3, D4, D5, D6, D7, D8, D9, exp1, exp2, exp3, exp4; // Math .Powers of reduced density D1 = dKp3 * d; D2 = D1 * D1; D3 = D2 * D1; D4 = D3 * D1; D5 = D4 * D1; D6 = D5 * D1; D7 = D6 * D1; D8 = D7 * D1; D9 = D8 * D1; exp1 = Math.exp(-D1); exp2 = Math.exp(-D2); exp3 = Math.exp(-D3); exp4 = Math.exp(-D4); // the following expression for Z was adopted from FORTRAN example in AGA8 dZ = 1.0 + dB * d + adFn[12] * D1 * (exp3 - 1.0 - 3.0 * D3 * exp3) + (adFn[13] + adFn[14] + adFn[15]) * D1 * (exp2 - 1.0 - 2.0 * D2 * exp2) + (adFn[16] + adFn[17]) * D1 * (exp4 - 1.0 - 4.0 * D4 * exp4) + (adFn[18] + adFn[19]) * D2 * 2.0 + (adFn[20] + adFn[21] + adFn[22]) * D2 * (2.0 - 2.0 * D2) * exp2 + (adFn[23] + adFn[24] + adFn[25]) * D2 * (2.0 - 4.0 * D4) * exp4 + adFn[26] * D2 * (2.0 - 4.0 * D4) * exp4 + adFn[27] * D3 * 3.0 + (adFn[28] + adFn[29]) * D3 * (3.0 - D1) * exp1 + (adFn[30] + adFn[31]) * D3 * (3.0 - 2.0 * D2) * exp2 + (adFn[32] + adFn[33]) * D3 * (3.0 - 3.0 * D3) * exp3 + (adFn[34] + adFn[35] + adFn[36]) * D3 * (3.0 - 4.0 * D4) * exp4 + (adFn[37] + adFn[38]) * D4 * 4.0 + (adFn[39] + adFn[40] + adFn[41]) * D4 * (4.0 - 2.0 * D2) * exp2 + (adFn[42] + adFn[43]) * D4 * (4.0 - 4.0 * D4) * exp4 + adFn[44] * D5 * 5.0 + (adFn[45] + adFn[46]) * D5 * (5.0 - 2.0 * D2) * exp2 + (adFn[47] + adFn[48]) * D5 * (5.0 - 4.0 * D4) * exp4 + adFn[49] * D6 * 6.0 + adFn[50] * D6 * (6.0 - 2.0 * D2) * exp2 + adFn[51] * D7 * 7.0 + adFn[52] * D7 * (7.0 - 2.0 * D2) * exp2 + adFn[53] * D8 * (8.0 - D1) * exp1 + (adFn[54] + adFn[55]) * D8 * (8.0 - 2.0 * D2) * exp2 + (adFn[56] + adFn[57]) * D9 * (9.0 - 2.0 * D2) * exp2; return dZ; }// zdetail() public double dZdT(double d) { //variables local to function double tmp; int i; double D1, D2, D3, D4, D5, D6, D7, D8, D9, exp1, exp2, exp3, exp4; //set up Math .Powers of reduced density D1 = dKp3 * d; D2 = D1 * D1; D3 = D2 * D1; D4 = D3 * D1; D5 = D4 * D1; D6 = D5 * D1; D7 = D6 * D1; D8 = D7 * D1; D9 = D8 * D1; exp1 = Math.exp(-D1); exp2 = Math.exp(-D2); exp3 = Math.exp(-D3); exp4 = Math.exp(-D4); // create terms uC*T^-(un+1) from coefficients we've already computed (An[n]) for (i = 12; i < 58; i++) { if (adUn[i] != 0 && adFn[i] != 0) { fx[i] = (adFn[i] * adUn[i] * D1) / dT; } else { fx[i] = 0.0; } } //initial part of equation ddZdT = d * ddBdT; //n=13 evaluates to zero except for hydrogen, for whom fn = 1 if (dF != 0) ddZdT += fx[12] - (fx[12] * (1.0 - 3.0 * D3) * exp3); tmp = (1.0 - 2.0 * D2) * exp2; ddZdT += (fx[13] - (fx[13] * tmp)); ddZdT += fx[14] - (fx[14] * tmp); ddZdT += fx[15] - (fx[15] * tmp); tmp = (1.0 - 4.0 * D4) * exp4; ddZdT += fx[16] - (fx[16] * tmp); ddZdT += fx[17] - (fx[17] * tmp); ddZdT = ddZdT - (fx[18] + fx[19]) * D1 * 2.0 - (fx[21] + fx[22]) * D1 * (2.0 - 2.0 * D2) * exp2 - (fx[23] + fx[24] + fx[25]) * D1 * (2.0 - 4.0 * D4) * exp4 - fx[26] * D1 * (2.0 - 4.0 * D4) * exp4 - fx[27] * D2 * 3.0 - (fx[28] + fx[29]) * D2 * (3.0 - D1) * exp1 - (fx[30] + fx[31]) * D2 * (3.0 - 2.0 * D2) * exp2 - (fx[32] + fx[33]) * D2 * (3.0 - 3.0 * D3) * exp3 - (fx[34] + fx[35] + fx[36]) * D2 * (3.0 - 4.0 * D4) * exp4 - fx[37] * D3 * 4.0 - (fx[39] + fx[40] + fx[41]) * D3 * (4.0 - 2.0 * D2) * exp2 - (fx[42] + fx[43]) * D3 * (4.0 - 4.0 * D4) * exp4 - fx[44] * D4 * 5.0 - (fx[45] + fx[46]) * D4 * (5.0 - 2.0 * D2) * exp2 - (fx[47] + fx[48]) * D4 * (5.0 - 4.0 * D4) * exp4 - fx[49] * D5 * 6.0 - fx[50] * D5 * (6.0 - 2.0 * D2) * exp2 - fx[51] * D6 * 7.0 - fx[52] * D6 * (7.0 - 2.0 * D2) * exp2 - fx[53] * D7 * (8.0 - D1) * exp1 - fx[54] * D7 * (8.0 - 2.0 * D2) * exp2 - fx[56] * D8 * (9.0 - 2.0 * D2) * exp2; return ddZdT; } public double d2ZdT2(double d) { //variables local to function double tmp; int i; double D1, D2, D3, D4, D5, D6, D7, D8, D9, exp1, exp2, exp3, exp4; //set up Math .Powers of reduced density D1 = dKp3 * d; D2 = D1 * D1; D3 = D2 * D1; D4 = D3 * D1; D5 = D4 * D1; D6 = D5 * D1; D7 = D6 * D1; D8 = D7 * D1; D9 = D8 * D1; exp1 = Math.exp(-D1); exp2 = Math.exp(-D2); exp3 = Math.exp(-D3); exp4 = Math.exp(-D4); // create terms uC*T^-(un+1) from coefficients we've already computed (An[n]) for (i = 12; i < 58; i++) { if (adUn[i] != 0 && adFn[i] != 0) { fx[i] = (adFn[i] * D1 * adUn[i] * (adUn[i] + 1.0)) / (dT * dT); } else { fx[i] = 0.0; } } //initial part of equation dd2ZdT2 = d * dd2BdT2; //n=13 evaluates to zero except for hydrogen, for whom fn = 1 if (dF != 0) dd2ZdT2 += fx[12] - (fx[12] * (1.0 - 3.0 * D3) * exp3); tmp = (1.0 - 2.0 * D2) * exp2; dd2ZdT2 += -fx[13] + (fx[13] * tmp); dd2ZdT2 += -fx[14] + (fx[14] * tmp); dd2ZdT2 += -fx[15] + (fx[15] * tmp); tmp = (1.0 - 4.0 * D4) * exp4; dd2ZdT2 += -fx[16] + (fx[16] * tmp); dd2ZdT2 += -fx[17] + (fx[17] * tmp); dd2ZdT2 = dd2ZdT2 + (fx[18] + fx[19]) * D1 * 2.0 + (fx[21] + fx[22]) * D1 * (2.0 - 2.0 * D2) * exp2 + (fx[23] + fx[24] + fx[25]) * D1 * (2.0 - 4.0 * D4) * exp4 + fx[26] * D1 * (2.0 - 4.0 * D4) * exp4 + fx[27] * D2 * 3.0 + (fx[28] + fx[29]) * D2 * (3.0 - D1) * exp1 + (fx[30] + fx[31]) * D2 * (3.0 - 2.0 * D2) * exp2 + (fx[32] + fx[33]) * D2 * (3.0 - 3.0 * D3) * exp3 + (fx[34] + fx[35] + fx[36]) * D2 * (3.0 - 4.0 * D4) * exp4 + fx[37] * D3 * 4.0 + (fx[39] + fx[40] + fx[41]) * D3 * (4.0 - 2.0 * D2) * exp2 + (fx[42] + fx[43]) * D3 * (4.0 - 4.0 * D4) * exp4 + fx[44] * D4 * 5.0 + (fx[45] + fx[46]) * D4 * (5.0 - 2.0 * D2) * exp2 + (fx[47] + fx[48]) * D4 * (5.0 - 4.0 * D4) * exp4 + fx[49] * D5 * 6.0 + fx[50] * D5 * (6.0 - 2.0 * D2) * exp2 + fx[51] * D6 * 7.0 + fx[52] * D6 * (7.0 - 2.0 * D2) * exp2 + fx[53] * D7 * (8.0 - D1) * exp1 + fx[54] * D7 * (8.0 - 2.0 * D2) * exp2 + fx[56] * D8 * (9.0 - 2.0 * D2) * exp2; return dd2ZdT2; }// d2ZdT2() public double dZdD(double d) { double temp, temp1, temp2, temp3; int i; double D1, D2, D3, D4, D5, D6, D7, D8, D9, exp1, exp2, exp3, exp4; // set up Math .Powers of reduced density D1 = dKp3 * d; D2 = D1 * D1; D3 = D2 * D1; D4 = D3 * D1; D5 = D4 * D1; D6 = D5 * D1; D7 = D6 * D1; D8 = D7 * D1; D9 = D8 * D1; exp1 = Math.exp(-D1); exp2 = Math.exp(-D2); exp3 = Math.exp(-D3); exp4 = Math.exp(-D4); //create terms uC*T^-(un+1) from coefficients we've already computed (An[n]) for (i = 12; i < 58; i++) { fx[i] = adFn[i]; } //initial part of equation ddZdD = dB / dKp3; //evaluate all remaining terms, simplifying where possible //n=13 evaluates to zero except for hydrogen, for whom fn = 1 if (dF != 0) { temp1 = -9.0 * D3 * exp3; temp2 = (1.0 - 3.0 * D3) * exp3; temp3 = -temp2 * 3.0 * D6; temp = temp1 + temp2 + temp3; ddZdD += -fx[12] + fx[12] * temp; } //n = 14..16 temp1 = -4.0 * D2 * exp2; temp2 = (1.0 - 2.0 * D2) * exp2; temp3 = -temp2 * 2.0 * D2; temp = temp1 + temp2 + temp3; ddZdD += -fx[13] + fx[13] * temp; ddZdD += -fx[14] + fx[14] * temp; ddZdD += -fx[15] + fx[15] * temp; // n =17..18 temp1 = -16.0 * D4 * exp4; temp2 = (1.0 - 4.0 * D4) * exp4; temp3 = -temp2 * 4.0 * D4; temp = temp1 + temp2 + temp3; ddZdD += -fx[16] + fx[16] * temp; ddZdD += -fx[17] + fx[17] * temp; // n = 19..20 temp = 4.0 * D1; ddZdD += fx[18] * temp; ddZdD += fx[19] * temp; // n =21..23 temp1 = -4.0 * D3 * exp2; temp2 = (2.0 - 2.0 * D2) * 2.0 * D1 * exp2; temp3 = -temp2 * D2; temp = temp1 + temp2 + temp3; ddZdD += fx[20] * temp; ddZdD += fx[21] * temp; ddZdD += fx[22] * temp; // n =24..27 temp1 = -16.0 * D5 * exp4; temp2 = (2.0 - 4.0 * D4) * 2.0 * D1 * exp4; temp3 = -temp2 * 2.0 * D4; temp = temp1 + temp2 + temp3; ddZdD += fx[23] * temp; ddZdD += fx[24] * temp; ddZdD += fx[25] * temp; ddZdD += fx[26] * temp; // n =28 temp = 9.0 * D2; ddZdD += fx[27] * temp; // n =29..30 temp = -D3 * exp1 + (3.0 - D1) * 3.0 * D2 * exp1; temp -= (3.0 - D1) * D3 * exp1; ddZdD += fx[28] * temp; ddZdD += fx[29] * temp; // n =31..32 temp1 = -4.0 * D4 * exp2; temp2 = (3.0 - 2.0 * D2) * 3.0 * D2 * exp2; temp3 = -(3.0 - 2.0 * D2) * 2.0 * D4 * exp2; temp = temp1 + temp2 + temp3; ddZdD += fx[30] * temp; ddZdD += fx[31] * temp; // n =33..34 temp1 = -9.0 * D5 * exp3; temp2 = (3.0 - 3.0 * D3) * 3.0 * D2 * exp3; temp3 = -(3.0 - 3.0 * D3) * 3.0 * D5 * exp3; temp = temp1 + temp2 + temp3; ddZdD += fx[32] * temp; ddZdD += fx[33] * temp; // n =35..37 temp1 = -16.0 * D6 * exp4; temp2 = (3.0 - 4.0 * D4) * 3.0 * D2 * exp4; temp3 = -(3.0 - 4.0 * D4) * D6 * 4.0 * exp4; temp = temp1 + temp2 + temp3; ddZdD += fx[34] * temp; ddZdD += fx[35] * temp; ddZdD += fx[36] * temp; //n = 38..39 temp = 16.0 * D3; ddZdD += fx[37] * temp; ddZdD += fx[38] * temp; //n = 40..42 temp1 = -4.0 * D5 * exp2; temp2 = (4.0 - 2.0 * D2) * 4.0 * D3 * exp2; temp3 = -(4.0 - 2.0 * D2) * 2.0 * D5 * exp2; temp = temp1 + temp2 + temp3; ddZdD += fx[39] * temp; ddZdD += fx[40] * temp; ddZdD += fx[41] * temp; // n =43..44 temp = -16.0 * D7 * exp4 + (4.0 - 4.0 * D4) * 4.0 * D3 * exp4; temp -= (4.0 - 4.0 * D4) * D7 * 4.0 * exp4; ddZdD += fx[42] * temp; ddZdD += fx[43] * temp; // n =45 temp = 25.0 * D4; ddZdD += fx[44] * temp; // n =46..47 temp = -4.0 * D6 * exp2 + (5.0 - 2.0 * D2) * 5.0 * D4 * exp2; temp -= (5.0 - 2.0 * D2) * D6 * 2.0 * exp2; ddZdD += fx[45] * temp; ddZdD += fx[46] * temp; // n =48..49 temp = -16.0 * D8 * exp4 + (5.0 - 4.0 * D4) * 5.0 * D4 * exp4; temp -= (5.0 - 4.0 * D4) * D8 * 4.0 * exp4; ddZdD += fx[47] * temp; ddZdD += fx[48] * temp; // n =50 temp = 36.0 * D5; ddZdD += fx[49] * temp; // n =51 temp = -4.0 * D7 * exp2 + (6.0 - 2.0 * D2) * 6.0 * D5 * exp2; temp -= (6.0 - 2.0 * D2) * D7 * 2.0 * exp2; ddZdD += fx[50] * temp; // n =52 temp = 49.0 * D6; ddZdD += fx[51] * temp; // n =53 temp = -4.0 * D8 * exp2 + (7.0 - 2.0 * D2) * 7.0 * D6 * exp2; temp -= (7.0 - 2.0 * D2) * D8 * 2.0 * exp2; ddZdD += fx[52] * temp; // n =54 temp = -1.0 * D8 * exp1 + (8.0 - D1) * 8.0 * D7 * exp1; temp -= (8.0 - D1) * D8 * exp1; ddZdD += fx[53] * temp; // n =55..56 temp = -4.0 * D1 * D8 * exp2 + (8.0 - 2.0 * D2) * 8.0 * D7 * exp2; temp -= (8.0 - 2.0 * D2) * D8 * 2.0 * D1 * exp2; ddZdD += fx[54] * temp; ddZdD += fx[55] * temp; // n =57..58 temp = -4.0 * D2 * D8 * exp2 + (9.0 - 2.0 * D2) * 9.0 * D8 * exp2; temp -= (9.0 - 2.0 * D2) * D2 * D8 * 2.0 * exp2; ddZdD += fx[56] * temp; ddZdD += fx[57] * temp; ddZdD *= dKp3; return ddZdD; } public void relativedensity(GasProps gasProps) { double dBX, dZa; double dMWair = 28.96256; dBX = -0.12527 + 5.91e-4 * gasProps.dTb - 6.62e-7 * gasProps.dTb * gasProps.dTb; // calculate compressibility of air dZa = 1.0 + (dBX * dP) / (GasConstants.RGASKJ * gasProps.dTb); // calculate ideal gas and real gas relative densities gasProps.dRD_Ideal = gasProps.dMrx / dMWair; gasProps.dRD_Real = gasProps.dRD_Ideal * (dZa / gasProps.dZb); } }