package com.ruoyi.ngCalTools.service; import com.ruoyi.ngCalTools.model.GasProps; import com.ruoyi.ngCalTools.utils.GasConstants; import org.springframework.stereotype.Service; @Service public class ThermService { private static final double CAL_TH = 4.1840; public int coefA = 0; public int coefB = 1; public int coefC = 2; public int coefD = 3; public int coefE = 4; public int coefF = 5; public int coefG = 6; public int coefH = 7; public int coefI = 8; public int coefJ = 9; public int coefK = 10; double dPdD;// partial deriv of P wrt D double dPdT;// partial deriv of P wrt T double dSi;// ideal gas specific entropy, kJ/kg.K double dTold;// temperature previously used double dMrxold;// mixture molar mass previously used //set the number of points for quadrature int GK_points = 5; // 初始化 GK_root 数组 double[] GK_root = { 0.14887433898163121088, 0.43339539412924719080, 0.67940956829902440263, 0.86506336668898451073, 0.97390652851717172008 }; // 初始化 GK_weight 数组 double[] GK_weight = { 0.29552422471475286217, 0.26926671930999634918, 0.21908636251598204295, 0.14945134915058059038, 0.066671344308688137179 }; private final double[][] ThermConstants = { {-29776.4, 7.95454, 43.9417, 1037.09, 1.56373, 813.205, -24.9027, 1019.98, -10.1601, 1070.14, -20.0615}, {-3495.34, 6.95587, 0.272892, 662.738, -0.291318, -680.562, 1.78980, 1740.06, 0.0, 100.0, 4.49823}, {20.7307, 6.96237, 2.68645, 500.371, -2.56429, -530.443, 3.91921, 500.198, 2.13290, 2197.22, 5.81381}, {-37524.4, 7.98139, 24.3668, 752.320, 3.53990, 272.846, 8.44724, 1020.13, -13.2732, 869.510, -22.4010}, {-56072.1, 8.14319, 37.0629, 735.402, 9.38159, 247.190, 13.4556, 1454.78, -11.7342, 984.518, -24.0426}, {-13773.1, 7.97183, 6.27078, 2572.63, 2.05010, 1156.72, 0.0, 100.0, 0.0, 100.0, -3.24989}, {-10085.4, 7.94680, -0.08380, 433.801, 2.85539, 843.792, 6.31595, 1481.43, -2.88457, 1102.23, -0.51551}, {-5565.60, 6.66789, 2.33458, 2584.98, 0.749019, 559.656, 0.0, 100.0, 0.0, 100.0, -7.94821}, {-2753.49, 6.95854, 2.02441, 1541.22, 0.096774, 3674.81, 0.0, 100.0, 0.0, 100.0, 6.23387}, {-3497.45, 6.96302, 2.40013, 2522.05, 2.21752, 1154.15, 0.0, 100.0, 0.0, 100.0, 9.19749}, {-72387.0, 17.8143, 58.2062, 1787.39, 40.7621, 808.645, 0.0, 100.0, 0.0, 100.0, -44.1341}, {-72674.8, 18.6383, 57.4178, 1792.73, 38.6599, 814.151, 0.0, 100.0, 0.0, 100.0, -46.1938}, {-91505.5, 21.3861, 74.3410, 1701.58, 47.0587, 775.899, 0.0, 100.0, 0.0, 100.0, -60.2474}, {-83845.2, 22.5012, 69.5789, 1719.58, 46.2164, 802.174, 0.0, 100.0, 0.0, 100.0, -62.2197}, {-94982.5, 26.6225, 80.3819, 1718.49, 55.6598, 802.069, 0.0, 100.0, 0.0, 100.0, -77.5366}, {-103353.0, 30.4029, 90.6941, 1669.32, 63.2028, 786.001, 0.0, 100.0, 0.0, 100.0, -92.0164}, {-109674.0, 34.0847, 100.253, 1611.55, 69.7675, 768.847, 0.0, 100.0, 0.0, 100.0, -106.149}, {-122599.0, 38.5014, 111.446, 1646.48, 80.5015, 781.588, 0.0, 100.0, 0.0, 100.0, -122.444}, {-133564.0, 42.7143, 122.173, 1654.85, 90.2255, 785.564, 0.0, 100.0, 0.0, 100.0, -138.006}, {0.0, 4.9680, 0.0, 100.0, 0.0, 100.0, 0.0, 100.0, 0.0, 100.0, 0.0}, {0.0, 4.9680, 0.0, 100.0, 0.0, 100.0, 0.0, 100.0, 0.0, 100.0, 0.0} }; public ThermService() { // initialize 3 history-sensitive variables dSi = 0.0; dTold = 0.0; dMrxold = 0.0; } public void Run(GasProps gasProps, DetailService detailService) { //local variables double c, x, y, z; //first run basic set of functions within AGA 8 (1994) Detail Method detailService.run(gasProps); //find first partial derivative of Z wrt D detailService.dZdD(gasProps.dDf); //find real gas cv, cp, specific enthalpy and entropy CprCvrHS(gasProps, detailService); //ratio of real gas specific heats gasProps.dk = gasProps.dCp / gasProps.dCv; //solve c in three steps, for clarity and ease of debugging x = gasProps.dk * GasConstants.RGAS * 1000.0 * gasProps.dTf; y = gasProps.dMrx; z = gasProps.dZf + gasProps.dDf * detailService.ddZdD; //calculate c, which is SOS^2 c = (x / y) * z; //speed of sound gasProps.dSOS = Math.sqrt(c); //calculate the real gas isentropic exponent //using expression functionally equivalent to Equation 3.2 gasProps.dKappa = (c * gasProps.dRhof) / gasProps.dPf; return; } private double CpiMolar(GasProps gasProps) { double cp = 0.0; double Cpx; double DT, FT, HT, JT; double Dx, Fx, Hx, Jx; double T; T = gasProps.dTf; for (int i = 0; i < GasConstants.NUMBEROFCOMPONENTS; i++) { if (gasProps.getAdMixture()[i] > 0) { // 计算每个组分的贡献 Cpx = 0.0; // calculate species intermediate terms DT = ThermConstants[i][ coefD] / T; FT = ThermConstants[i][ coefF] / T; HT = ThermConstants[i][ coefH] / T; JT = ThermConstants[i][ coefJ] / T; // use intermediate terms to avoid redundant calcs Dx = DT / Math.sinh(DT); Fx = FT / Math.cosh(FT); Hx = HT / Math.sinh(HT); Jx = JT / Math.cosh(JT); Cpx += ThermConstants[i][ coefB]; Cpx += ThermConstants[i][ coefC] * Dx * Dx; Cpx += ThermConstants[i][ coefE] * Fx * Fx; Cpx += ThermConstants[i][ coefG] * Hx * Hx; Cpx += ThermConstants[i][ coefI] * Jx * Jx; //use current mole fraction to weight the contribution Cpx *= gasProps.adMixture[i]; //add this contribution to the sum cp += Cpx; } } return cp * CAL_TH; } // coth 函数实现 private static double coth(double x) { return 1.0 / Math.tanh(x); } // Ho 函数 public double Ho(GasProps gasProps) { double H = 0.0; double Hx; double DT, FT, HT, JT; double cothDT, tanhFT, cothHT, tanhJT; double T = gasProps.dTf; for (int i = 0; i < GasConstants.NUMBEROFCOMPONENTS; i++) { if (gasProps.adMixture[i] <= 0.0) continue; Hx = 0.0; DT = ThermConstants[i][coefD] / T; FT = ThermConstants[i][coefF] / T; HT = ThermConstants[i][coefH] / T; JT = ThermConstants[i][coefJ] / T; cothDT = coth(DT); tanhFT = Math.tanh(FT); cothHT = coth(HT); tanhJT = Math.tanh(JT); Hx += ThermConstants[i][coefA]; Hx += ThermConstants[i][coefB] * T; Hx += ThermConstants[i][coefC] * ThermConstants[i][coefD] * cothDT; Hx -= ThermConstants[i][coefE] * ThermConstants[i][coefF] * tanhFT; Hx += ThermConstants[i][coefG] * ThermConstants[i][coefH] * cothHT; Hx -= ThermConstants[i][coefI] * ThermConstants[i][coefJ] * tanhJT; Hx *= gasProps.adMixture[i]; H += Hx; } H *= CAL_TH; H /= gasProps.dMrx; return H * 1000.0; } // So 函数 public double So(GasProps gasProps) { double S = 0.0; double Sx; double DT, FT, HT, JT; double cothDT, tanhFT, cothHT, tanhJT; double sinhDT, coshFT, sinhHT, coshJT; double T = gasProps.dTf; for (int i = 0; i < GasConstants.NUMBEROFCOMPONENTS; i++) { if (gasProps.adMixture[i] <= 0.0) continue; Sx = 0.0; DT = ThermConstants[i][coefD] / T; FT = ThermConstants[i][coefF] / T; HT = ThermConstants[i][coefH] / T; JT = ThermConstants[i][coefJ] / T; cothDT = coth(DT); tanhFT = Math.tanh(FT); cothHT = coth(HT); tanhJT = Math.tanh(JT); sinhDT = Math.sinh(DT); coshFT = Math.cosh(FT); sinhHT = Math.sinh(HT); coshJT = Math.cosh(JT); Sx += ThermConstants[i][coefK]; Sx += ThermConstants[i][coefB] * Math.log(T); Sx += ThermConstants[i][coefC] * (DT * cothDT - Math.log(sinhDT)); Sx -= ThermConstants[i][coefE] * (FT * tanhFT - Math.log(coshFT)); Sx += ThermConstants[i][coefG] * (HT * cothHT - Math.log(sinhHT)); Sx -= ThermConstants[i][coefI] * (JT * tanhJT - Math.log(coshJT)); Sx *= gasProps.adMixture[i]; S += Sx; } S *= CAL_TH; S /= gasProps.dMrx; return S * 1000.0; } // CprCvrHS 函数 public void CprCvrHS(GasProps gasProps, DetailService detailService) { double Cvinc = 0.0; double Cvr, Cpr; double Hinc = 0.0; double Sinc = 0.0; double Smixing = 0.0; double Cp = CpiMolar(gasProps); double Si; gasProps.dHo = Ho(gasProps); Si = So(gasProps); gasProps.dCpi = (Cp * 1000.0) / gasProps.dMrx; for (int i = 0; i < GK_points; i++) { double x = gasProps.dDf * (1.0 + GK_root[i]) / 2.0; detailService.zdetail(x); detailService.dZdT(x); detailService.d2ZdT2(x); Hinc += GK_weight[i] * detailService.ddZdT / x; Cvinc += GK_weight[i] * (2.0 * detailService.ddZdT + gasProps.dTf * detailService.dd2ZdT2) / x; Sinc += GK_weight[i] * (detailService.dZ + gasProps.dTf * detailService.ddZdT - 1.0) / x; x = gasProps.dDf * (1.0 - GK_root[i]) / 2.0; detailService.zdetail(x); detailService.dZdT(x); detailService.d2ZdT2(x); Hinc += GK_weight[i] * detailService.ddZdT / x; Cvinc += GK_weight[i] * (2.0 * detailService.ddZdT + gasProps.dTf * detailService.dd2ZdT2) / x; Sinc += GK_weight[i] * (detailService.dZ + gasProps.dTf * detailService.ddZdT - 1.0) / x; } detailService.zdetail(gasProps.dDf); detailService.dZdT(gasProps.dDf); detailService.d2ZdT2(gasProps.dDf); Cvr = Cp - GasConstants.RGAS * (1.0 + gasProps.dTf * Cvinc * 0.5 * gasProps.dDf); double a = (gasProps.dZf + gasProps.dTf * detailService.ddZdT); double b = (gasProps.dZf + gasProps.dDf * detailService.ddZdD); double dPdT =GasConstants. RGAS * gasProps.dDf * a; double dPdD = GasConstants.RGAS * gasProps.dTf * b; Cpr = Cvr + GasConstants.RGAS * ((a * a) / b); Cpr /= gasProps.dMrx; Cvr /= gasProps.dMrx; gasProps.dCv = Cvr * 1000.0; gasProps.dCp = Cpr * 1000.0; gasProps.dH = gasProps.dHo + 1000.0 * GasConstants.RGAS * gasProps.dTf * (gasProps.dZf - 1.0 - gasProps.dTf * Hinc * 0.5 * gasProps.dDf) / gasProps.dMrx; for (int i = 0; i < GasConstants.NUMBEROFCOMPONENTS; i++) { if (gasProps.adMixture[i] != 0) Smixing += gasProps.adMixture[i] * Math.log(gasProps.adMixture[i]); } Smixing *= GasConstants.RGAS; gasProps.dS = Si - Smixing - 1000.0 * GasConstants.RGAS * (Math.log(gasProps.dPf / 101325.0) - Math.log(gasProps.dZf) + Sinc * 0.5 * gasProps.dDf) / gasProps.dMrx; } // HS_Mode 函数 public void HS_Mode( GasProps gasProps, DetailService detailService, double H, double S, boolean bGuess) { double s0 = S; double h0 = H; double t1, t2, tmin, tmax; double p1, p2, px, pmin, pmax; double delta1, delta2; double tolerance = 0.001; if (bGuess) { t1 = gasProps.dTf; px = gasProps.dPf; pmax = px * 2.0; pmin = px * 0.1; tmax = t1 * 1.5; tmin = t1 * 0.67; } else { t1 = 273.15; px = 1013250.0; pmax = GasConstants.P_MAX; pmin = 10000.0; tmax = GasConstants.T_MAX; tmin = GasConstants.T_MIN; } t2 = t1 + 10.0; detailService.run(gasProps); double h1 = H(gasProps, detailService) - h0; for (int i = 0; i < GasConstants.MAX_NUM_OF_ITERATIONS; i++) { gasProps.dTf = t2; p1 = px; p2 = px * 0.1; gasProps.dPf = p1; detailService.run(gasProps); double s1 = S(gasProps, detailService) - s0; for (int j = 0; j < GasConstants.MAX_NUM_OF_ITERATIONS; j++) { gasProps.dPf = p2; detailService.run(gasProps); double s2 = S(gasProps, detailService) - s0; delta2 = Math.abs(s1 - s2) / s0; if (delta2 < tolerance) break; double p0 = p2; p2 = (p1 * s2 - p2 * s1) / (s2 - s1); if (p2 <= pmin) p2 = pmin; if (p2 >= pmax) p2 = pmax; p1 = p0; s1 = s2; } if (gasProps.lStatus == GasConstants.MAX_NUM_OF_ITERATIONS_EXCEEDED) break; double h2 = H(gasProps, detailService) - h0; delta1 = Math.abs(h1 - h2) / h0; if (delta1 < tolerance && i > 0) break; double t0 = t2; t2 = (t1 * h2 - t2 * h1) / (h2 - h1); if (t2 >= tmax) t2 = tmax; if (t2 <= tmin) { t2 = t0 + 10.0; gasProps.dTf = t2; detailService.run(gasProps); h2 = H(gasProps, detailService) - h0; } t1 = t0; h1 = h2; } if (gasProps.lStatus == GasConstants.MAX_NUM_OF_ITERATIONS_EXCEEDED) { gasProps.lStatus = GasConstants.MAX_NUM_OF_ITERATIONS_EXCEEDED; } } // H 函数 public double H(GasProps gasProps, DetailService detailService) { double Hinc = 0.0; gasProps.dHo = Ho(gasProps); for (int i = 0; i < GK_points; i++) { double x = gasProps.dDf * (1.0 + GK_root[i]) / 2.0; detailService.zdetail(x); detailService.dZdT(x); detailService.d2ZdT2(x); Hinc += GK_weight[i] * detailService.ddZdT / x; if (i == 10) break; x = gasProps.dDf * (1.0 - GK_root[i]) / 2.0; detailService.zdetail(x); detailService.dZdT(x); detailService.d2ZdT2(x); Hinc += GK_weight[i] * detailService.ddZdT / x; } detailService.zdetail(gasProps.dDf); detailService.dZdT(gasProps.dDf); detailService.d2ZdT2(gasProps.dDf); gasProps.dH = gasProps.dHo + 1000.0 * GasConstants.RGAS * gasProps.dTf * (gasProps.dZf - 1.0 - gasProps.dTf * Hinc * 0.5 * gasProps.dDf) / gasProps.dMrx; return gasProps.dH; } double S(GasProps gasProps, DetailService detailService) { double Sinc; double Smixing; double x; int i; //initialize integral Sinc = 0.0; //initialize entropy of mixing Smixing = 0.0; //integrate partial derivatives from D=0 to D=D, applying Gauss-Kronrod quadrature for (i = 0; i