ruoyi-api/ruoyi-ngtools/src/main/java/com/ruoyi/ngCalTools/service/DetailService.java

1374 lines
50 KiB
Java
Raw Normal View History

2025-02-04 09:20:17 +00:00
package com.ruoyi.ngCalTools.service;
import com.ruoyi.ngCalTools.model.GasProps;
import com.ruoyi.ngCalTools.utils.GasConstants;
import org.springframework.stereotype.Service;
@Service
public class DetailService {
private static final int NUMBER_OF_COMPONENTS = 21;
private static final double RGASKJ = 8.314510e-3;
// 成员变量转换
// 组件数量
private int iNCC;
// 组件ID数组长度为21
private int[] aiCID = new int[21];
// 五个历史变量,用于在重复计算时提高效率
// 上一次计算的混合物ID
double dOldMixID;
// 上一次计算的Pb值
double dOldPb;
// 上一次计算的Tb值
double dOldTb;
// 上一次计算的Pf值
double dOldPf;
// 上一次计算的Tf值
double dOldTf;
// 来自表4第1列的EOS参数
// 长度为58的数组adAn
double[] adAn = new double[58];
// 长度为58的数组adUn
double[] adUn = new double[58];
// 来自表5的特征参数
// 第i个组件的分子量
double[] dMri = new double[21];
// 第i个组件的特征能量参数
double[] dEi = new double[21];
// 第i个组件的尺寸参数 - m^3/kg-mol ^1/3
double[] dKi = new double[21];
// 取向参数
double[] dGi = new double[21];
// 四极矩参数
double[] dQi = new double[21];
// 高温参数
double[] dFi = new double[21];
// 偶极矩参数
double[] dSi = new double[21];
// 关联参数
double[] dWi = new double[21];
// 维里系数能量二元相互作用参数
double[][] dEij = new double[21][21];
// 共形能量的二元相互作用参数
double[][] dUij = new double[21][21];
// 尺寸的二元相互作用参数
double[][] dKij = new double[21][21];
// 取向的二元相互作用参数
double[][] dGij = new double[21][21];
// 表6常量
double[][] adTable6Eij = new double[21][21];
// 表6常量
double[][] adTable6Uij = new double[21][21];
// 表6常量
double[][] adTable6Kij = new double[21][21];
// 表6常量
double[][] adTable6Gij = new double[21][21];
double[] adTable5Qi = new double[21]; // table 5 constants
double[] adTable5Fi = new double[21]; // table 5 constants
double[] adTable5Si = new double[21]; // table 5 constants
double[] adTable5Wi = new double[21]; // table 5 constants
// 组件i的摩尔分数数组长度为21
double[] dXi = new double[21];
// 由pdetail()方法计算得到的压力
double dPCalc;
// 当前温度
double dT;
// 当前压力
double dP;
// 在温度T和压力P下的摩尔密度
double dRhoTP;
// 第二维里系数B
double dB;
// 用于计算B的18个系数的数组
double[] adBcoef = new double[18];
// 密度系数的函数数组长度为58
double[] adFn = new double[58];
// 用于3个导数的修正系数数组长度为58
double[] fx = new double[58];
// 混合能量参数
double dU;
// 混合尺寸参数的三次方
double dKp3;
// 混合取向参数
double dW;
// 混合四极矩参数的平方
double dQp2;
// 高温参数
double dF;
// 摩尔密度
double dRho;
// 在braket函数中使用的低密度
double dRhoL;
// 在braket函数中使用的高密度
double dRhoH;
// 在braket函数中使用的低压
double dPRhoL;
// 在braket函数中使用的高压
double dPRhoH;
// 也用于高级流体性质计算的公共变量
// 当前压缩因子
public double dZ;
// Z对T的一阶偏导数
public double ddZdT;
// Z对T的二阶偏导数
public double dd2ZdT2;
// Z对摩尔密度的一阶偏导数
public double ddZdD;
// B对T的一阶偏导数
public double ddBdT;
// B对T的二阶偏导数
public double dd2BdT2;
// 其他成员变量...
public void run(GasProps gasProps) {
// 实现转换后的逻辑
int i;
// Check for gas composition change
gasProps.bForceUpdate = gasProps.bForceUpdate || compositionChange(gasProps);
// assign component IDs and values
if (gasProps.bForceUpdate) {
iNCC = -1;
for (i = 0; i < GasConstants.NUMBEROFCOMPONENTS; i++) {
if (gasProps.adMixture[i] > 0.0) {
iNCC = iNCC + 1;
aiCID[iNCC] = i;
dXi[iNCC] = gasProps.adMixture[i];
}
}
iNCC = iNCC + 1;
//calculate composition dependent quantities; ported from original
//FORTRAN functions paramdl() and chardl()
paramdl();
chardl(gasProps);
}
//evaluate T & P dependent parms at base pressure and temperature,
//but only if necessary
if (Math.abs(gasProps.dPb - dOldPb) > GasConstants.P_CHG_TOL || Math.abs(gasProps.dTb - dOldTb) > GasConstants.T_CHG_TOL || gasProps.bForceUpdate) {
dP = gasProps.dPb * 1.0e-6; // AGA 8 uses MPa internally
dT = gasProps.dTb;
//calculate temperature dependent parms
temp();
//determine molar density
ddetail(gasProps);
gasProps.dDb = dRho;
//determine compressibility
gasProps.dZb = zdetail(dRho);
// calculate mass density
dRhoTP = (dP * gasProps.dMrx) / (gasProps.dZb * GasConstants.RGASKJ * dT);
//calculate relative density
relativedensity(gasProps);
//copy density to data structure member
gasProps.dRhob = dRhoTP;
//update history and clear the ForceUpdate flag
dOldTb = gasProps.dTb;
dOldPb = gasProps.dPb;
gasProps.bForceUpdate = true;
}
//repeat the process using flowing conditions
//begin by loading P & T from data structure
//AGA 8 uses MPa internally; converted from Pa here
dP = gasProps.dPf * 1.0e-6;
dT = gasProps.dTf;
//check whether to calculate temperature dependent parms
if (Math.abs(gasProps.dTf - dOldTf) > GasConstants.T_CHG_TOL || gasProps.bForceUpdate) {
//if temperature has changed, we must follow through
temp();
//force ForceUpdate flag to true
gasProps.bForceUpdate = true;
}
// check whether to calculate other parms
if (Math.abs(gasProps.dPf - dOldPf) > GasConstants.P_CHG_TOL || gasProps.bForceUpdate) {
//determine molar density
ddetail(gasProps);
gasProps.dDf = dRho;
//determine compressibility
gasProps.dZf = zdetail(dRho);
//calculate mass density
dRhoTP = (dP * gasProps.dMrx) / (gasProps.dZf * GasConstants.RGASKJ * dT);
//copy density to data structure member
gasProps.dRhof = dRhoTP;
//update history
dOldTf = gasProps.dTf;
dOldPf = gasProps.dPf;
}
//calculate legacy factor Fpv
//NOTE: as implemented here, Fpv is not constrained to 14.73 psi and 60F
if (gasProps.dZb > 0.0 && gasProps.dZf > 0.0) {
gasProps.dFpv = Math.sqrt(gasProps.dZb / gasProps.dZf);
} else {
//if either Zb or Zf is zero at this point, we have a serious unexpected problem
gasProps.dFpv = gasProps.dZb = gasProps.dZf = 0.0;
gasProps.lStatus = GasConstants.GENERAL_CALCULATION_FAILURE;
}
//we are now up to date; toggle off the update flag
gasProps.bForceUpdate = false;
// 其他计算逻辑...
}
private boolean compositionChange(GasProps gasProps) {
double dMixID = 0.0;
for (int i = 0; i < NUMBER_OF_COMPONENTS; i++) {
dMixID += ((i + 2) * gasProps.getAdMixture()[i]);
}
if (dMixID != dOldMixID) {
dOldMixID = dMixID;
return true;
}
return false;
}
public void paramdl() {
int j, k;
// table 5 parameters; declared locally to this function
double[] adTable5Mri = new double[GasConstants.NUMBEROFCOMPONENTS];
double[] adTable5Ei = new double[GasConstants.NUMBEROFCOMPONENTS];
double[] adTable5Ki = new double[GasConstants.NUMBEROFCOMPONENTS];
double[] adTable5Gi = new double[GasConstants.NUMBEROFCOMPONENTS];
// 初始化adTable5Mri数组
adTable5Mri = new double[]{16.0430, 28.0135, 44.0100, 30.0700, 44.0970, 18.0153, 34.0820, 2.0159, 28.0100, 31.9988, 58.1230, 58.1230, 72.1500, 72.1500, 86.1770, 100.2040, 114.2310, 128.2580, 142.2850, 4.0026, 39.9480};
// 初始化adTable5Ei数组
adTable5Ei = new double[]{151.318300, 99.737780, 241.960600, 244.166700, 298.118300, 514.015600, 296.355000, 26.957940, 105.534800, 122.766700, 324.068900, 337.638900, 365.599900, 370.682300, 402.636293, 427.722630, 450.325022, 470.840891, 489.558373, 2.610111, 119.629900};
// 初始化adTable5Ki数组
adTable5Ki = new double[]{0.4619255, 0.4479153, 0.4557489, 0.5279209, 0.5837490, 0.3825868, 0.4618263, 0.3514916, 0.4533894, 0.4186954, 0.6406937, 0.6341423, 0.6738577, 0.6798307, 0.7175118, 0.7525189, 0.7849550, 0.8152731, 0.8437826, 0.3589888, 0.4216551};
// 初始化adTable5Gi数组
adTable5Gi = new double[]{0.000000, 0.027815, 0.189065, 0.079300, 0.141239, 0.332500, 0.088500, 0.034369, 0.038953, 0.021000, 0.256692, 0.281835, 0.332267, 0.366911, 0.289731, 0.337542, 0.383381, 0.427354, 0.469659, 0.000000, 0.000000};
//most of the table 5 parameters are zero
for (j = 0; j < GasConstants.NUMBEROFCOMPONENTS; j++) {
adTable5Qi[j] = 0.0;
adTable5Fi[j] = 0.0;
adTable5Si[j] = 0.0;
adTable5Wi[j] = 0.0;
}
//a small number of exceptions
adTable5Qi[2] = 0.690000;
adTable5Qi[5] = 1.067750;
adTable5Qi[6] = 0.633276;
adTable5Fi[7] = 1.0000;
adTable5Si[5] = 1.5822;
adTable5Si[6] = 0.3900;
adTable5Wi[5] = 1.0000;
// setup characterization parameters for non-zero components
for (j = iNCC - 1; j >= 0; j--) {
dMri[j] = adTable5Mri[aiCID[j]];
dKi[j] = adTable5Ki[aiCID[j]];
}
for (j = 0; j < iNCC; j++) {
dGi[j] = adTable5Gi[aiCID[j]];
dEi[j] = adTable5Ei[aiCID[j]];
}
for (j = 0; j < iNCC; j++) {
dQi[j] = adTable5Qi[aiCID[j]];
dFi[j] = 0.0;
if (aiCID[j] == 7) dFi[j] = adTable5Fi[7];
dSi[j] = adTable5Si[aiCID[j]];
dWi[j] = adTable5Wi[aiCID[j]];
}
// Binary interaction parameters for arrays: eij, kij, wij, uij
for (j = 0; j < iNCC; j++) {
for (k = j; k < iNCC; k++) {
dUij[j][k] = adTable6Uij[aiCID[j]][aiCID[k]];
dKij[j][k] = adTable6Kij[aiCID[j]][aiCID[k]];
dEij[j][k] = adTable6Eij[aiCID[j]][aiCID[k]];
dGij[j][k] = adTable6Gij[aiCID[j]][aiCID[k]];
}
}
}
public void chardl(GasProps gasProps) {
//variables local to function
int i, j;
double tmfrac, k5p0, k2p5, u5p0, u2p5, q1p0;
double Xij, Eij, Gij, e0p5, e2p0, e3p0, e3p5, e4p5, e6p0;
double e7p5, e9p5, e12p0, e12p5;
double e11p0, s3;
//normalize mole fractions and calculate molar mass
tmfrac = 0.0;
for (j = 0; j < iNCC; j++) {
tmfrac = tmfrac + dXi[j];
}
for (j = 0; j < iNCC; j++) {
dXi[j] = dXi[j] / tmfrac;
}
// reset virial coefficients
for (j = 0; j < 18; j++) {
adBcoef[j] = 0.0;
}
// initialize a key subset of the local variables
k5p0 = 0.0;
k2p5 = 0.0;
u5p0 = 0.0;
u2p5 = 0.0;
dW = 0.0;
q1p0 = 0.0;
dF = 0.0;
// calculate gas molecular weight
gasProps.dMrx = 0.0;
for (j = 0; j < iNCC; j++) {
gasProps.dMrx = gasProps.dMrx + dXi[j] * dMri[j];
}
// calculate the composition-dependent quantities, applying a nested loop
for (i = 0; i < iNCC; i++) {
k2p5 = k2p5 + dXi[i] * dKi[i] * dKi[i] * Math.sqrt(dKi[i]);
u2p5 = u2p5 + dXi[i] * dEi[i] * dEi[i] * Math.sqrt(dEi[i]);
dW = dW + dXi[i] * dGi[i];
q1p0 = q1p0 + dXi[i] * dQi[i];
dF = dF + dXi[i] * dXi[i] * dFi[i];
for (j = i; j < iNCC; j++) {
if (i != j) Xij = 2.0 * dXi[i] * dXi[j];
else Xij = dXi[i] * dXi[j];
// proceed while skipping interaction terms which equal 1.0
if (dKij[i][j] != 1.0)
k5p0 += Xij * (Math.pow(dKij[i][j], 5.0) - 1.0) * Math.pow((Math.pow(dKi[i], 5.0) * Math.pow(dKi[j], 5.0)), 0.5);
if (dUij[i][j] != 1.0)
u5p0 += Xij * (Math.pow(dUij[i][j], 5.0) - 1.0) * Math.pow((Math.pow(dEi[i], 5.0) * Math.pow(dEi[j], 5.0)), 0.5);
if (dGij[i][j] != 1.0)
dW += Xij * (dGij[i][j] - 1.0) * ((dGi[i] + dGi[j]) / 2.0);
// calculate terms required for second virial coefficient, B
Eij = dEij[i][j] * Math.sqrt(dEi[i] * dEi[j]);
Gij = dGij[i][j] * (dGi[i] + dGi[j]) / 2.0;
e0p5 = Math.sqrt(Eij);
e2p0 = Eij * Eij;
e3p0 = Eij * e2p0;
e3p5 = e3p0 * e0p5;
e4p5 = Eij * e3p5;
e6p0 = e3p0 * e3p0;
e11p0 = e4p5 * e4p5 * e2p0;
e7p5 = e4p5 * Eij * e2p0;
e9p5 = e7p5 * e2p0;
e12p0 = e11p0 * Eij;
e12p5 = e12p0 * e0p5;
s3 = Xij * Math.pow((Math.pow(dKi[i], 3.0) * Math.pow(dKi[j], 3)), 0.5);
adBcoef[0] = adBcoef[0] + s3;
adBcoef[1] = adBcoef[1] + s3 * e0p5;
adBcoef[2] = adBcoef[2] + s3 * Eij;
adBcoef[3] = adBcoef[3] + s3 * e3p5;
adBcoef[4] = adBcoef[4] + s3 * Gij / e0p5;
adBcoef[5] = adBcoef[5] + s3 * Gij * e4p5;
adBcoef[6] = adBcoef[6] + s3 * dQi[i] * dQi[j] * e0p5;
adBcoef[7] = adBcoef[7] + s3 * dSi[i] * dSi[j] * e7p5;
adBcoef[8] = adBcoef[8] + s3 * dSi[i] * dSi[j] * e9p5;
adBcoef[9] = adBcoef[9] + s3 * dWi[i] * dWi[j] * e6p0;
adBcoef[10] = adBcoef[10] + s3 * dWi[i] * dWi[j] * e12p0;
adBcoef[11] = adBcoef[11] + s3 * dWi[i] * dWi[j] * e12p5;
adBcoef[12] = adBcoef[12] + s3 * dFi[i] * dFi[j] / e6p0;
adBcoef[13] = adBcoef[13] + s3 * e2p0;
adBcoef[14] = adBcoef[14] + s3 * e3p0;
adBcoef[15] = adBcoef[15] + s3 * dQi[i] * dQi[j] * e2p0;
adBcoef[16] = adBcoef[16] + s3 * e2p0;
adBcoef[17] = adBcoef[17] + s3 * e11p0;
}
}
//grab the first 18 constants from table 4, completing Bnij
for (i = 0; i < 18; i++) adBcoef[i] *= adAn[i];
//final products of chardl are mixture size parameter K, energy parameter U,
//and quadrupole parameter Q
dKp3 = Math.pow((k5p0 + k2p5 * k2p5), 0.6);
dU = Math.pow((u5p0 + u2p5 * u2p5), 0.2);
dQp2 = q1p0 * q1p0;
}
// 其他方法转换...
public void table() {
int j, k;
GasProps gasProps;
// 58 constants from table 4 - column A(n)
adAn[0] = 0.153832600;
adAn[1] = 1.341953000;
adAn[2] = -2.998583000;
adAn[3] = -0.048312280;
adAn[4] = 0.375796500;
adAn[5] = -1.589575000;
adAn[6] = -0.053588470;
adAn[7] = 0.886594630;
adAn[8] = -0.710237040;
adAn[9] = -1.471722000;
adAn[10] = 1.321850350;
adAn[11] = -0.786659250;
adAn[12] = 2.29129E-09;
adAn[13] = 0.157672400;
adAn[14] = -0.436386400;
adAn[15] = -0.044081590;
adAn[16] = -0.003433888;
adAn[17] = 0.032059050;
adAn[18] = 0.024873550;
adAn[19] = 0.073322790;
adAn[20] = -0.001600573;
adAn[21] = 0.642470600;
adAn[22] = -0.416260100;
adAn[23] = -0.066899570;
adAn[24] = 0.279179500;
adAn[25] = -0.696605100;
adAn[26] = -0.002860589;
adAn[27] = -0.008098836;
adAn[28] = 3.150547000;
adAn[29] = 0.007224479;
adAn[30] = -0.705752900;
adAn[31] = 0.534979200;
adAn[32] = -0.079314910;
adAn[33] = -1.418465000;
adAn[34] = -5.99905E-17;
adAn[35] = 0.105840200;
adAn[36] = 0.034317290;
adAn[37] = -0.007022847;
adAn[38] = 0.024955870;
adAn[39] = 0.042968180;
adAn[40] = 0.746545300;
adAn[41] = -0.291961300;
adAn[42] = 7.294616000;
adAn[43] = -9.936757000;
adAn[44] = -0.005399808;
adAn[45] = -0.243256700;
adAn[46] = 0.049870160;
adAn[47] = 0.003733797;
adAn[48] = 1.874951000;
adAn[49] = 0.002168144;
adAn[50] = -0.658716400;
adAn[51] = 0.000205518;
adAn[52] = 0.009776195;
adAn[53] = -0.020487080;
adAn[54] = 0.015573220;
adAn[55] = 0.006862415;
adAn[56] = -0.001226752;
adAn[57] = 0.002850908;
// 58 constants from table 4 - column Un
adUn[0] = 0.0;
adUn[1] = 0.5;
adUn[2] = 1.0;
adUn[3] = 3.5;
adUn[4] = -0.5;
adUn[5] = 4.5;
adUn[6] = 0.5;
adUn[7] = 7.5;
adUn[8] = 9.5;
adUn[9] = 6.0;
adUn[10] = 12.0;
adUn[11] = 12.5;
adUn[12] = -6.0;
adUn[13] = 2.0;
adUn[14] = 3.0;
adUn[15] = 2.0;
adUn[16] = 2.0;
adUn[17] = 11.0;
adUn[18] = -0.5;
adUn[19] = 0.5;
adUn[20] = 0.0;
adUn[21] = 4.0;
adUn[22] = 6.0;
adUn[23] = 21.0;
adUn[24] = 23.0;
adUn[25] = 22.0;
adUn[26] = -1.0;
adUn[27] = -0.5;
adUn[28] = 7.0;
adUn[29] = -1.0;
adUn[30] = 6.0;
adUn[31] = 4.0;
adUn[32] = 1.0;
adUn[33] = 9.0;
adUn[34] = -13.0;
adUn[35] = 21.0;
adUn[36] = 8.0;
adUn[37] = -0.5;
adUn[38] = 0.0;
adUn[39] = 2.0;
adUn[40] = 7.0;
adUn[41] = 9.0;
adUn[42] = 22.0;
adUn[43] = 23.0;
adUn[44] = 1.0;
adUn[45] = 9.0;
adUn[46] = 3.0;
adUn[47] = 8.0;
adUn[48] = 23.0;
adUn[49] = 1.5;
adUn[50] = 5.0;
adUn[51] = -0.5;
adUn[52] = 4.0;
adUn[53] = 7.0;
adUn[54] = 3.0;
adUn[55] = 0.0;
adUn[56] = 1.0;
adUn[57] = 0.0;
//Most of the tables are filled with 1.0 or 0.0
//It is up to us to set non-zero values
for (j = 0; j < GasConstants.NUMBEROFCOMPONENTS; j++) {
for (k = j; k < GasConstants.NUMBEROFCOMPONENTS; k++) {
adTable6Eij[j][k] = 1.0;
adTable6Uij[j][k] = 1.0;
adTable6Kij[j][k] = 1.0;
adTable6Gij[j][k] = 1.0;
}
}
//Lnsert the 132 items of non-zero and non-1.0 data
//This looks more cumbersome than it is, considering table 6 has 1764 members
adTable6Eij[0][1] = 0.971640;
adTable6Eij[0][2] = 0.960644;
adTable6Eij[0][4] = 0.994635;
adTable6Eij[0][5] = 0.708218;
adTable6Eij[0][6] = 0.931484;
adTable6Eij[0][7] = 1.170520;
adTable6Eij[0][8] = 0.990126;
adTable6Eij[0][10] = 1.019530;
adTable6Eij[0][11] = 0.989844;
adTable6Eij[0][12] = 1.002350;
adTable6Eij[0][13] = 0.999268;
adTable6Eij[0][14] = 1.107274;
adTable6Eij[0][15] = 0.880880;
adTable6Eij[0][16] = 0.880973;
adTable6Eij[0][17] = 0.881067;
adTable6Eij[0][18] = 0.881161;
adTable6Eij[1][2] = 1.022740;
adTable6Eij[1][3] = 0.970120;
adTable6Eij[1][4] = 0.945939;
adTable6Eij[1][5] = 0.746954;
adTable6Eij[1][6] = 0.902271;
adTable6Eij[1][7] = 1.086320;
adTable6Eij[1][8] = 1.005710;
adTable6Eij[1][9] = 1.021000;
adTable6Eij[1][10] = 0.946914;
adTable6Eij[1][11] = 0.973384;
adTable6Eij[1][12] = 0.959340;
adTable6Eij[1][13] = 0.945520;
adTable6Eij[2][3] = 0.925053;
adTable6Eij[2][4] = 0.960237;
adTable6Eij[2][5] = 0.849408;
adTable6Eij[2][6] = 0.955052;
adTable6Eij[2][7] = 1.281790;
adTable6Eij[2][8] = 1.500000;
adTable6Eij[2][10] = 0.906849;
adTable6Eij[2][11] = 0.897362;
adTable6Eij[2][12] = 0.726255;
adTable6Eij[2][13] = 0.859764;
adTable6Eij[2][14] = 0.855134;
adTable6Eij[2][15] = 0.831229;
adTable6Eij[2][16] = 0.808310;
adTable6Eij[2][17] = 0.786323;
adTable6Eij[2][18] = 0.765171;
adTable6Eij[3][4] = 1.022560;
adTable6Eij[3][5] = 0.693168;
adTable6Eij[3][6] = 0.946871;
adTable6Eij[3][7] = 1.164460;
adTable6Eij[3][11] = 1.013060;
adTable6Eij[3][13] = 1.005320;
adTable6Eij[4][7] = 1.034787;
adTable6Eij[4][11] = 1.004900;
adTable6Eij[6][14] = 1.008692;
adTable6Eij[6][15] = 1.010126;
adTable6Eij[6][16] = 1.011501;
adTable6Eij[6][17] = 1.012821;
adTable6Eij[6][18] = 1.014089;
adTable6Eij[7][8] = 1.100000;
adTable6Eij[7][10] = 1.300000;
adTable6Eij[7][11] = 1.300000;
adTable6Uij[0][1] = 0.886106;
adTable6Uij[0][2] = 0.963827;
adTable6Uij[0][4] = 0.990877;
adTable6Uij[0][6] = 0.736833;
adTable6Uij[0][7] = 1.156390;
adTable6Uij[0][11] = 0.992291;
adTable6Uij[0][13] = 1.003670;
adTable6Uij[0][14] = 1.302576;
adTable6Uij[0][15] = 1.191904;
adTable6Uij[0][16] = 1.205769;
adTable6Uij[0][17] = 1.219634;
adTable6Uij[0][18] = 1.233498;
adTable6Uij[1][2] = 0.835058;
adTable6Uij[1][3] = 0.816431;
adTable6Uij[1][4] = 0.915502;
adTable6Uij[1][6] = 0.993476;
adTable6Uij[1][7] = 0.408838;
adTable6Uij[1][11] = 0.993556;
adTable6Uij[2][3] = 0.969870;
adTable6Uij[2][6] = 1.045290;
adTable6Uij[2][8] = 0.900000;
adTable6Uij[2][14] = 1.066638;
adTable6Uij[2][15] = 1.077634;
adTable6Uij[2][16] = 1.088178;
adTable6Uij[2][17] = 1.098291;
adTable6Uij[2][18] = 1.108021;
adTable6Uij[3][4] = 1.065173;
adTable6Uij[3][6] = 0.971926;
adTable6Uij[3][7] = 1.616660;
adTable6Uij[3][10] = 1.250000;
adTable6Uij[3][11] = 1.250000;
adTable6Uij[3][12] = 1.250000;
adTable6Uij[3][13] = 1.250000;
adTable6Uij[6][14] = 1.028973;
adTable6Uij[6][15] = 1.033754;
adTable6Uij[6][16] = 1.038338;
adTable6Uij[6][17] = 1.042735;
adTable6Uij[6][18] = 1.046966;
adTable6Kij[0][1] = 1.003630;
adTable6Kij[0][2] = 0.995933;
adTable6Kij[0][4] = 1.007619;
adTable6Kij[0][6] = 1.000080;
adTable6Kij[0][7] = 1.023260;
adTable6Kij[0][11] = 0.997596;
adTable6Kij[0][13] = 1.002529;
adTable6Kij[0][14] = 0.982962;
adTable6Kij[0][15] = 0.983565;
adTable6Kij[0][16] = 0.982707;
adTable6Kij[0][17] = 0.981849;
adTable6Kij[0][18] = 0.980991;
adTable6Kij[1][2] = 0.982361;
adTable6Kij[1][3] = 1.007960;
adTable6Kij[1][6] = 0.942596;
adTable6Kij[1][7] = 1.032270;
adTable6Kij[2][3] = 1.008510;
adTable6Kij[2][6] = 1.007790;
adTable6Kij[2][14] = 0.910183;
adTable6Kij[2][15] = 0.895362;
adTable6Kij[2][16] = 0.881152;
adTable6Kij[2][17] = 0.867520;
adTable6Kij[2][18] = 0.854406;
adTable6Kij[3][4] = 0.986893;
adTable6Kij[3][6] = 0.999969;
adTable6Kij[3][7] = 1.020340;
adTable6Kij[6][14] = 0.968130;
adTable6Kij[6][15] = 0.962870;
adTable6Kij[6][16] = 0.957828;
adTable6Kij[6][17] = 0.952441;
adTable6Kij[6][18] = 0.948338;
adTable6Gij[0][2] = 0.807653;
adTable6Gij[0][7] = 1.957310;
adTable6Gij[1][2] = 0.982746;
adTable6Gij[2][3] = 0.370296;
adTable6Gij[2][5] = 1.673090;
}
public void bvir() {
//variables local to function
double t0p5, t2p0, t3p0, t3p5, t4p5, t6p0, t11p0;
double t7p5, t9p5, t12p0, t12p5;
double t1p5, t4p0;
double[] Bx = new double[18];
int i;
//reset B and partial devivatives to 0.0
dB = ddBdT = dd2BdT2 = 0.0;
//pre-calculate Math .Powers of T
t0p5 = Math.sqrt(dT);
t2p0 = dT * dT;
t3p0 = dT * t2p0;
t3p5 = t3p0 * t0p5;
t4p5 = dT * t3p5;
t6p0 = t3p0 * t3p0;
t11p0 = t4p5 * t4p5 * t2p0;
t7p5 = t6p0 * dT * t0p5;
t9p5 = t7p5 * t2p0;
t12p0 = t9p5 * t0p5 * t2p0;
t12p5 = t12p0 * t0p5;
t1p5 = dT * t0p5;
t4p0 = t2p0 * t2p0;
//coefficients for B
Bx[0] = adBcoef[0];
Bx[1] = adBcoef[1] / t0p5;
Bx[2] = adBcoef[2] / dT;
Bx[3] = adBcoef[3] / t3p5;
Bx[4] = adBcoef[4] * t0p5;
Bx[5] = adBcoef[5] / t4p5;
Bx[6] = adBcoef[6] / t0p5;
Bx[7] = adBcoef[7] / t7p5;
Bx[8] = adBcoef[8] / t9p5;
Bx[9] = adBcoef[9] / t6p0;
Bx[10] = adBcoef[10] / t12p0;
Bx[11] = adBcoef[11] / t12p5;
Bx[12] = adBcoef[12] * t6p0;
Bx[13] = adBcoef[13] / t2p0;
Bx[14] = adBcoef[14] / t3p0;
Bx[15] = adBcoef[15] / t2p0;
Bx[16] = adBcoef[16] / t2p0;
Bx[17] = adBcoef[17] / t11p0;
//sum up the pieces for second virial coefficient, B
for (i = 0; i < 18; i++) {
dB += Bx[i];
}
//calculate terms for first derivative of B, wrt T
for (i = 0; i < 18; i++) {
if (adUn[i] != 0)
Bx[i] *= adUn[i];
}
//sum up the pieces of first derivative of B
//note div by dT; changes exponent of T
for (i = 0; i < 18; i++) {
if (adUn[i] != 0)
ddBdT += Bx[i] / dT;
}
//sign change here
ddBdT = -ddBdT;
//calculate terms for second derivative of B, wrt T
for (i = 0; i < 18; i++) {
if (adUn[i] != 0 && adUn[i] != -1.0) Bx[i] *= (adUn[i] + 1.0);
}
//sum up the pieces of second derivative of B
//note division by dT, thereby changing the exponent of T
//loop will ignore Bx[0] which is = 0.0
for (i = 0; i < 18; i++) {
if (adUn[i] != 0 && adUn[i] != -1.0) dd2BdT2 += Bx[i] / t2p0;
}
}
public void temp() {
// Note: this function was ported from the AGA Report No.8 FORTRAN listing,
// retaining as much of the original content as possible
// variables local to function
double tr0p5, tr1p5, tr2p0, tr3p0, tr4p0, tr5p0, tr6p0;
double tr7p0, tr8p0, tr9p0, tr11p0, tr13p0, tr21p0;
double tr22p0, tr23p0, tr;
/*calculate second virial coefficient B*/
bvir();
// calculate adFn(12) through adFn(57)
// adFn(0)-adFn(11) do not contribute to csm terms
tr = dT / dU;
tr0p5 = Math.sqrt(tr);
tr1p5 = tr * tr0p5;
tr2p0 = tr * tr;
tr3p0 = tr * tr2p0;
tr4p0 = tr * tr3p0;
tr5p0 = tr * tr4p0;
tr6p0 = tr * tr5p0;
tr7p0 = tr * tr6p0;
tr8p0 = tr * tr7p0;
tr9p0 = tr * tr8p0;
tr11p0 = tr6p0 * tr5p0;
tr13p0 = tr6p0 * tr7p0;
tr21p0 = tr9p0 * tr9p0 * tr3p0;
tr22p0 = tr * tr21p0;
tr23p0 = tr * tr22p0;
adFn[12] = adAn[12] * dF * tr6p0;
adFn[13] = adAn[13] / tr2p0;
adFn[14] = adAn[14] / tr3p0;
adFn[15] = adAn[15] * dQp2 / tr2p0;
adFn[16] = adAn[16] / tr2p0;
adFn[17] = adAn[17] / tr11p0;
adFn[18] = adAn[18] * tr0p5;
adFn[19] = adAn[19] / tr0p5;
adFn[20] = adAn[20];
adFn[21] = adAn[21] / tr4p0;
adFn[22] = adAn[22] / tr6p0;
adFn[23] = adAn[23] / tr21p0;
adFn[24] = adAn[24] * dW / tr23p0;
adFn[25] = adAn[25] * dQp2 / tr22p0;
adFn[26] = adAn[26] * dF * tr;
adFn[27] = adAn[27] * dQp2 * tr0p5;
adFn[28] = adAn[28] * dW / tr7p0;
adFn[29] = adAn[29] * dF * tr;
adFn[30] = adAn[30] / tr6p0;
adFn[31] = adAn[31] * dW / tr4p0;
adFn[32] = adAn[32] * dW / tr;
adFn[33] = adAn[33] * dW / tr9p0;
adFn[34] = adAn[34] * dF * tr13p0;
adFn[35] = adAn[35] / tr21p0;
adFn[36] = adAn[36] * dQp2 / tr8p0;
adFn[37] = adAn[37] * tr0p5;
adFn[38] = adAn[38];
adFn[39] = adAn[39] / tr2p0;
adFn[40] = adAn[40] / tr7p0;
adFn[41] = adAn[41] * dQp2 / tr9p0;
adFn[42] = adAn[42] / tr22p0;
adFn[43] = adAn[43] / tr23p0;
adFn[44] = adAn[44] / tr;
adFn[45] = adAn[45] / tr9p0;
adFn[46] = adAn[46] * dQp2 / tr3p0;
adFn[47] = adAn[47] / tr8p0;
adFn[48] = adAn[48] * dQp2 / tr23p0;
adFn[49] = adAn[49] / tr1p5;
adFn[50] = adAn[50] * dW / tr5p0;
adFn[51] = adAn[51] * dQp2 * tr0p5;
adFn[52] = adAn[52] / tr4p0;
adFn[53] = adAn[53] * dW / tr7p0;
adFn[54] = adAn[54] / tr3p0;
adFn[55] = adAn[55] * dW;
adFn[56] = adAn[56] / tr;
adFn[57] = adAn[57] * dQp2;
}
public void ddetail(GasProps gasProps) {
int imax, i;
double epsp, epsr, epsmin;
double x1, x2, x3, y1, y2, y3;
double delx, delprv, delmin, delbis, xnumer, xdenom, sgndel;
double y2my3, y3my1, y1my2, boundn;
//initialize convergence tolerances
imax = 150;
epsp = 1.0e-6;
epsr = 1.0e-6;
epsmin = 1.0e-7;
dRho = 0.0;
//call subroutine braket to bracket density solution
braket(gasProps);
//check value of "lStatus" returned from subroutine braket
if (gasProps.lStatus == GasConstants.MAX_NUM_OF_ITERATIONS_EXCEEDED || gasProps.lStatus == GasConstants.NEGATIVE_DENSITY_DERIVATIVE) {
return;
}
//set up to start Brent's method
//x is the independent variable, y the dependent variable
//delx is the current iteration change in x
//delprv is the previous iteration change in x
x1 = dRhoL;
x2 = dRhoH;
y1 = dPRhoL - dP;
y2 = dPRhoH - dP;
delx = x1 - x2;
delprv = delx;
//solution is bracketed between x1 and x2
//a third point x3 is introduced for quadratic interpolation
x3 = x1;
y3 = y1;
for (i = 0; i < imax; i++) {
//y3 must be opposite in sign from y2 so solution between x2,x3
if (y2 * y3 > 0.0) {
x3 = x1;
y3 = y1;
delx = x1 - x2;
delprv = delx;
}
//y2 must be value of y closest to y=0.0, then x2new=x2old+delx
if (Math.abs(y3) < Math.abs(y2)) {
x1 = x2;
x2 = x3;
x3 = x1;
y1 = y2;
y2 = y3;
y3 = y1;
}
//delmin is minimum allowed step size for unconverged iteration
delmin = epsmin * Math.abs(x2);
//if procedure is not converging or if delprv is less than delmin
//use bisection instead
//delbis = 0.5d0*(x3 - x2) is the bisection delx
delbis = 0.5 * (x3 - x2);
// tests to select numerical method for current iteration
if (Math.abs(delprv) < delmin || Math.abs(y1) < Math.abs(y2)) {
// use bisection
delx = delbis;
delprv = delbis;
} else {
if (x3 != x1) {
// use inverse quadratic interpolation
y2my3 = y2 - y3;
y3my1 = y3 - y1;
y1my2 = y1 - y2;
xdenom = -(y1my2) * (y2my3) * (y3my1);
xnumer = x1 * y2 * y3 * (y2my3)
+ x2 * y3 * y1 * (y3my1)
+ x3 * y1 * y2 * (y1my2) - x2 * xdenom;
} else {
// use inverse linear interpolation
xnumer = (x2 - x1) * y2;
xdenom = y1 - y2;
}
// before calculating delx check delx=xnumer/xdenom is not out of bounds
if (2.0 * Math.abs(xnumer) < Math.abs(delprv * xdenom)) {
// procedure converging, use interpolation
delprv = delx;
delx = xnumer / xdenom;
} else {
// procedure diverging, use bisection
delx = delbis;
delprv = delbis;
}
}
// check for convergence
if ((Math.abs(y2) < epsp * dP) && (Math.abs(delx) < epsr * Math.abs(x2))) {
dRho = x2 + delx;
return;
}
//when unconverged, abs(delx) must be greater than delmin
//minimum allowed magnitude of change in x2 is 1.0000009*delmin
//sgndel, the sign of change in x2 is sign of delbis
if (Math.abs(delx) < delmin) {
sgndel = delbis / Math.abs(delbis);
delx = 1.0000009 * sgndel * delmin;
delprv = delx;
}
//final check to insure that new x2 is in range of old x2 and x3
//boundn is negative if new x2 is in range of old x2 and x3
boundn = delx * (x2 + delx - x3);
if (boundn > 0.0) {
// procedure stepping out of bounds, use bisection
delx = delbis;
delprv = delbis;
}
//relable variables for next iteration
//x1new = x2old, y1new=y2old
x1 = x2;
y1 = y2;
// next iteration values for x2, y2
x2 = x2 + delx;
pdetail(x2);
y2 = dPCalc - dP;
}
// ddetail: maximum number of iterations exceeded
gasProps.lStatus = GasConstants.MAX_NUM_OF_ITERATIONS_EXCEEDED;
dRho = x2;
}// ddetail()
public void braket(GasProps gasProps) {
//variables local to function
int imax, it;
double del, rhomax, videal;
double rho1, rho2, p1, p2;
//initialize
imax = 200;
rho1 = 0.0;
p1 = 0.0;
rhomax = 1.0 / dKp3;
if (dT > 1.2593 * dU) rhomax = 20.0 * rhomax;
videal = GasConstants.RGASKJ * dT / dP;
if (Math.abs(dB) < (0.167 * videal)) {
rho2 = 0.95 / (videal + dB);
} else {
rho2 = 1.15 / videal;
}
del = rho2 / 20.0;
// start iterative density search loop
for (it = 0; it < imax; it++) {
if (rho2 > rhomax && gasProps.lStatus != GasConstants.MAX_DENSITY_IN_BRAKET_EXCEEDED) {
// density in braket exceeds maximum allowable density
gasProps.lStatus = GasConstants.MAX_DENSITY_IN_BRAKET_EXCEEDED;
del = 0.01 * (rhomax - rho1) + (dP / (GasConstants.RGASKJ * dT)) / 20.0;
rho2 = rho1 + del;
continue;
}
//calculate pressure p2 at density rho2
pdetail(rho2);
p2 = dPCalc;
//test value of p2 relative to p and relative to p1
if (p2 > dP) {
//the density root is bracketed (p1<p and p2>p)
dRhoL = rho1;
dPRhoL = p1;
dRhoH = rho2;
dPRhoH = p2;
gasProps.lStatus = GasConstants.NORMAL;
return;
} else if (p2 > p1) {
if (gasProps.lStatus == GasConstants.MAX_DENSITY_IN_BRAKET_EXCEEDED) del *= 2.0;
rho1 = rho2;
p1 = p2;
rho2 = rho1 + del;
continue;
} else {
//lStatus= NEGATIVE_DENSITY_DERIVATIVEindicates that
//pressure has a negative density derivative, since p2 is less than
//some previous pressure
gasProps.lStatus = GasConstants.NEGATIVE_DENSITY_DERIVATIVE;
dRho = rho1;
return;
}
}
// maximum number of iterations exceeded if we fall through the bottom
gasProps.lStatus = GasConstants.MAX_NUM_OF_ITERATIONS_EXCEEDED;
dRho = rho2;
return;
}// braket()
public void pdetail(double dD) {
dPCalc = zdetail(dD) * dD * GasConstants.RGASKJ * dT;
}// pdetail()
public double zdetail(double d) {
// variables local to function
double D1, D2, D3, D4, D5, D6, D7, D8, D9, exp1, exp2, exp3, exp4;
// Math .Powers of reduced density
D1 = dKp3 * d;
D2 = D1 * D1;
D3 = D2 * D1;
D4 = D3 * D1;
D5 = D4 * D1;
D6 = D5 * D1;
D7 = D6 * D1;
D8 = D7 * D1;
D9 = D8 * D1;
exp1 = Math.exp(-D1);
exp2 = Math.exp(-D2);
exp3 = Math.exp(-D3);
exp4 = Math.exp(-D4);
// the following expression for Z was adopted from FORTRAN example in AGA8
dZ = 1.0 + dB * d
+ adFn[12] * D1 * (exp3 - 1.0 - 3.0 * D3 * exp3)
+ (adFn[13] + adFn[14] + adFn[15]) * D1 * (exp2 - 1.0 - 2.0 * D2 * exp2)
+ (adFn[16] + adFn[17]) * D1 * (exp4 - 1.0 - 4.0 * D4 * exp4)
+ (adFn[18] + adFn[19]) * D2 * 2.0
+ (adFn[20] + adFn[21] + adFn[22]) * D2 * (2.0 - 2.0 * D2) * exp2
+ (adFn[23] + adFn[24] + adFn[25]) * D2 * (2.0 - 4.0 * D4) * exp4
+ adFn[26] * D2 * (2.0 - 4.0 * D4) * exp4
+ adFn[27] * D3 * 3.0
+ (adFn[28] + adFn[29]) * D3 * (3.0 - D1) * exp1
+ (adFn[30] + adFn[31]) * D3 * (3.0 - 2.0 * D2) * exp2
+ (adFn[32] + adFn[33]) * D3 * (3.0 - 3.0 * D3) * exp3
+ (adFn[34] + adFn[35] + adFn[36]) * D3 * (3.0 - 4.0 * D4) * exp4
+ (adFn[37] + adFn[38]) * D4 * 4.0
+ (adFn[39] + adFn[40] + adFn[41]) * D4 * (4.0 - 2.0 * D2) * exp2
+ (adFn[42] + adFn[43]) * D4 * (4.0 - 4.0 * D4) * exp4
+ adFn[44] * D5 * 5.0
+ (adFn[45] + adFn[46]) * D5 * (5.0 - 2.0 * D2) * exp2
+ (adFn[47] + adFn[48]) * D5 * (5.0 - 4.0 * D4) * exp4
+ adFn[49] * D6 * 6.0
+ adFn[50] * D6 * (6.0 - 2.0 * D2) * exp2
+ adFn[51] * D7 * 7.0
+ adFn[52] * D7 * (7.0 - 2.0 * D2) * exp2
+ adFn[53] * D8 * (8.0 - D1) * exp1
+ (adFn[54] + adFn[55]) * D8 * (8.0 - 2.0 * D2) * exp2
+ (adFn[56] + adFn[57]) * D9 * (9.0 - 2.0 * D2) * exp2;
return dZ;
}// zdetail()
public double dZdT(double d) {
//variables local to function
double tmp;
int i;
double D1, D2, D3, D4, D5, D6, D7, D8, D9, exp1, exp2, exp3, exp4;
//set up Math .Powers of reduced density
D1 = dKp3 * d;
D2 = D1 * D1;
D3 = D2 * D1;
D4 = D3 * D1;
D5 = D4 * D1;
D6 = D5 * D1;
D7 = D6 * D1;
D8 = D7 * D1;
D9 = D8 * D1;
exp1 = Math.exp(-D1);
exp2 = Math.exp(-D2);
exp3 = Math.exp(-D3);
exp4 = Math.exp(-D4);
// create terms uC*T^-(un+1) from coefficients we've already computed (An[n])
for (i = 12; i < 58; i++) {
if (adUn[i] != 0 && adFn[i] != 0) {
fx[i] = (adFn[i] * adUn[i] * D1) / dT;
} else {
fx[i] = 0.0;
}
}
//initial part of equation
ddZdT = d * ddBdT;
//n=13 evaluates to zero except for hydrogen, for whom fn = 1
if (dF != 0) ddZdT += fx[12] - (fx[12] * (1.0 - 3.0 * D3) * exp3);
tmp = (1.0 - 2.0 * D2) * exp2;
ddZdT += (fx[13] - (fx[13] * tmp));
ddZdT += fx[14] - (fx[14] * tmp);
ddZdT += fx[15] - (fx[15] * tmp);
tmp = (1.0 - 4.0 * D4) * exp4;
ddZdT += fx[16] - (fx[16] * tmp);
ddZdT += fx[17] - (fx[17] * tmp);
ddZdT = ddZdT - (fx[18] + fx[19]) * D1 * 2.0
- (fx[21] + fx[22]) * D1 * (2.0 - 2.0 * D2) * exp2
- (fx[23] + fx[24] + fx[25]) * D1 * (2.0 - 4.0 * D4) * exp4
- fx[26] * D1 * (2.0 - 4.0 * D4) * exp4
- fx[27] * D2 * 3.0
- (fx[28] + fx[29]) * D2 * (3.0 - D1) * exp1
- (fx[30] + fx[31]) * D2 * (3.0 - 2.0 * D2) * exp2
- (fx[32] + fx[33]) * D2 * (3.0 - 3.0 * D3) * exp3
- (fx[34] + fx[35] + fx[36]) * D2 * (3.0 - 4.0 * D4) * exp4
- fx[37] * D3 * 4.0
- (fx[39] + fx[40] + fx[41]) * D3 * (4.0 - 2.0 * D2) * exp2
- (fx[42] + fx[43]) * D3 * (4.0 - 4.0 * D4) * exp4
- fx[44] * D4 * 5.0
- (fx[45] + fx[46]) * D4 * (5.0 - 2.0 * D2) * exp2
- (fx[47] + fx[48]) * D4 * (5.0 - 4.0 * D4) * exp4
- fx[49] * D5 * 6.0
- fx[50] * D5 * (6.0 - 2.0 * D2) * exp2
- fx[51] * D6 * 7.0
- fx[52] * D6 * (7.0 - 2.0 * D2) * exp2
- fx[53] * D7 * (8.0 - D1) * exp1
- fx[54] * D7 * (8.0 - 2.0 * D2) * exp2
- fx[56] * D8 * (9.0 - 2.0 * D2) * exp2;
return ddZdT;
}
public double d2ZdT2(double d) {
//variables local to function
double tmp;
int i;
double D1, D2, D3, D4, D5, D6, D7, D8, D9, exp1, exp2, exp3, exp4;
//set up Math .Powers of reduced density
D1 = dKp3 * d;
D2 = D1 * D1;
D3 = D2 * D1;
D4 = D3 * D1;
D5 = D4 * D1;
D6 = D5 * D1;
D7 = D6 * D1;
D8 = D7 * D1;
D9 = D8 * D1;
exp1 = Math.exp(-D1);
exp2 = Math.exp(-D2);
exp3 = Math.exp(-D3);
exp4 = Math.exp(-D4);
// create terms uC*T^-(un+1) from coefficients we've already computed (An[n])
for (i = 12; i < 58; i++) {
if (adUn[i] != 0 && adFn[i] != 0) {
fx[i] = (adFn[i] * D1 * adUn[i] * (adUn[i] + 1.0)) / (dT * dT);
} else {
fx[i] = 0.0;
}
}
//initial part of equation
dd2ZdT2 = d * dd2BdT2;
//n=13 evaluates to zero except for hydrogen, for whom fn = 1
if (dF != 0) dd2ZdT2 += fx[12] - (fx[12] * (1.0 - 3.0 * D3) * exp3);
tmp = (1.0 - 2.0 * D2) * exp2;
dd2ZdT2 += -fx[13] + (fx[13] * tmp);
dd2ZdT2 += -fx[14] + (fx[14] * tmp);
dd2ZdT2 += -fx[15] + (fx[15] * tmp);
tmp = (1.0 - 4.0 * D4) * exp4;
dd2ZdT2 += -fx[16] + (fx[16] * tmp);
dd2ZdT2 += -fx[17] + (fx[17] * tmp);
dd2ZdT2 = dd2ZdT2 + (fx[18] + fx[19]) * D1 * 2.0
+ (fx[21] + fx[22]) * D1 * (2.0 - 2.0 * D2) * exp2
+ (fx[23] + fx[24] + fx[25]) * D1 * (2.0 - 4.0 * D4) * exp4
+ fx[26] * D1 * (2.0 - 4.0 * D4) * exp4
+ fx[27] * D2 * 3.0
+ (fx[28] + fx[29]) * D2 * (3.0 - D1) * exp1
+ (fx[30] + fx[31]) * D2 * (3.0 - 2.0 * D2) * exp2
+ (fx[32] + fx[33]) * D2 * (3.0 - 3.0 * D3) * exp3
+ (fx[34] + fx[35] + fx[36]) * D2 * (3.0 - 4.0 * D4) * exp4
+ fx[37] * D3 * 4.0
+ (fx[39] + fx[40] + fx[41]) * D3 * (4.0 - 2.0 * D2) * exp2
+ (fx[42] + fx[43]) * D3 * (4.0 - 4.0 * D4) * exp4
+ fx[44] * D4 * 5.0
+ (fx[45] + fx[46]) * D4 * (5.0 - 2.0 * D2) * exp2
+ (fx[47] + fx[48]) * D4 * (5.0 - 4.0 * D4) * exp4
+ fx[49] * D5 * 6.0
+ fx[50] * D5 * (6.0 - 2.0 * D2) * exp2
+ fx[51] * D6 * 7.0
+ fx[52] * D6 * (7.0 - 2.0 * D2) * exp2
+ fx[53] * D7 * (8.0 - D1) * exp1
+ fx[54] * D7 * (8.0 - 2.0 * D2) * exp2
+ fx[56] * D8 * (9.0 - 2.0 * D2) * exp2;
return dd2ZdT2;
}// d2ZdT2()
public double dZdD(double d) {
double temp, temp1, temp2, temp3;
int i;
double D1, D2, D3, D4, D5, D6, D7, D8, D9, exp1, exp2, exp3, exp4;
// set up Math .Powers of reduced density
D1 = dKp3 * d;
D2 = D1 * D1;
D3 = D2 * D1;
D4 = D3 * D1;
D5 = D4 * D1;
D6 = D5 * D1;
D7 = D6 * D1;
D8 = D7 * D1;
D9 = D8 * D1;
exp1 = Math.exp(-D1);
exp2 = Math.exp(-D2);
exp3 = Math.exp(-D3);
exp4 = Math.exp(-D4);
//create terms uC*T^-(un+1) from coefficients we've already computed (An[n])
for (i = 12; i < 58; i++) {
fx[i] = adFn[i];
}
//initial part of equation
ddZdD = dB / dKp3;
//evaluate all remaining terms, simplifying where possible
//n=13 evaluates to zero except for hydrogen, for whom fn = 1
if (dF != 0) {
temp1 = -9.0 * D3 * exp3;
temp2 = (1.0 - 3.0 * D3) * exp3;
temp3 = -temp2 * 3.0 * D6;
temp = temp1 + temp2 + temp3;
ddZdD += -fx[12] + fx[12] * temp;
}
//n = 14..16
temp1 = -4.0 * D2 * exp2;
temp2 = (1.0 - 2.0 * D2) * exp2;
temp3 = -temp2 * 2.0 * D2;
temp = temp1 + temp2 + temp3;
ddZdD += -fx[13] + fx[13] * temp;
ddZdD += -fx[14] + fx[14] * temp;
ddZdD += -fx[15] + fx[15] * temp;
// n =17..18
temp1 = -16.0 * D4 * exp4;
temp2 = (1.0 - 4.0 * D4) * exp4;
temp3 = -temp2 * 4.0 * D4;
temp = temp1 + temp2 + temp3;
ddZdD += -fx[16] + fx[16] * temp;
ddZdD += -fx[17] + fx[17] * temp;
// n = 19..20
temp = 4.0 * D1;
ddZdD += fx[18] * temp;
ddZdD += fx[19] * temp;
// n =21..23
temp1 = -4.0 * D3 * exp2;
temp2 = (2.0 - 2.0 * D2) * 2.0 * D1 * exp2;
temp3 = -temp2 * D2;
temp = temp1 + temp2 + temp3;
ddZdD += fx[20] * temp;
ddZdD += fx[21] * temp;
ddZdD += fx[22] * temp;
// n =24..27
temp1 = -16.0 * D5 * exp4;
temp2 = (2.0 - 4.0 * D4) * 2.0 * D1 * exp4;
temp3 = -temp2 * 2.0 * D4;
temp = temp1 + temp2 + temp3;
ddZdD += fx[23] * temp;
ddZdD += fx[24] * temp;
ddZdD += fx[25] * temp;
ddZdD += fx[26] * temp;
// n =28
temp = 9.0 * D2;
ddZdD += fx[27] * temp;
// n =29..30
temp = -D3 * exp1 + (3.0 - D1) * 3.0 * D2 * exp1;
temp -= (3.0 - D1) * D3 * exp1;
ddZdD += fx[28] * temp;
ddZdD += fx[29] * temp;
// n =31..32
temp1 = -4.0 * D4 * exp2;
temp2 = (3.0 - 2.0 * D2) * 3.0 * D2 * exp2;
temp3 = -(3.0 - 2.0 * D2) * 2.0 * D4 * exp2;
temp = temp1 + temp2 + temp3;
ddZdD += fx[30] * temp;
ddZdD += fx[31] * temp;
// n =33..34
temp1 = -9.0 * D5 * exp3;
temp2 = (3.0 - 3.0 * D3) * 3.0 * D2 * exp3;
temp3 = -(3.0 - 3.0 * D3) * 3.0 * D5 * exp3;
temp = temp1 + temp2 + temp3;
ddZdD += fx[32] * temp;
ddZdD += fx[33] * temp;
// n =35..37
temp1 = -16.0 * D6 * exp4;
temp2 = (3.0 - 4.0 * D4) * 3.0 * D2 * exp4;
temp3 = -(3.0 - 4.0 * D4) * D6 * 4.0 * exp4;
temp = temp1 + temp2 + temp3;
ddZdD += fx[34] * temp;
ddZdD += fx[35] * temp;
ddZdD += fx[36] * temp;
//n = 38..39
temp = 16.0 * D3;
ddZdD += fx[37] * temp;
ddZdD += fx[38] * temp;
//n = 40..42
temp1 = -4.0 * D5 * exp2;
temp2 = (4.0 - 2.0 * D2) * 4.0 * D3 * exp2;
temp3 = -(4.0 - 2.0 * D2) * 2.0 * D5 * exp2;
temp = temp1 + temp2 + temp3;
ddZdD += fx[39] * temp;
ddZdD += fx[40] * temp;
ddZdD += fx[41] * temp;
// n =43..44
temp = -16.0 * D7 * exp4 + (4.0 - 4.0 * D4) * 4.0 * D3 * exp4;
temp -= (4.0 - 4.0 * D4) * D7 * 4.0 * exp4;
ddZdD += fx[42] * temp;
ddZdD += fx[43] * temp;
// n =45
temp = 25.0 * D4;
ddZdD += fx[44] * temp;
// n =46..47
temp = -4.0 * D6 * exp2 + (5.0 - 2.0 * D2) * 5.0 * D4 * exp2;
temp -= (5.0 - 2.0 * D2) * D6 * 2.0 * exp2;
ddZdD += fx[45] * temp;
ddZdD += fx[46] * temp;
// n =48..49
temp = -16.0 * D8 * exp4 + (5.0 - 4.0 * D4) * 5.0 * D4 * exp4;
temp -= (5.0 - 4.0 * D4) * D8 * 4.0 * exp4;
ddZdD += fx[47] * temp;
ddZdD += fx[48] * temp;
// n =50
temp = 36.0 * D5;
ddZdD += fx[49] * temp;
// n =51
temp = -4.0 * D7 * exp2 + (6.0 - 2.0 * D2) * 6.0 * D5 * exp2;
temp -= (6.0 - 2.0 * D2) * D7 * 2.0 * exp2;
ddZdD += fx[50] * temp;
// n =52
temp = 49.0 * D6;
ddZdD += fx[51] * temp;
// n =53
temp = -4.0 * D8 * exp2 + (7.0 - 2.0 * D2) * 7.0 * D6 * exp2;
temp -= (7.0 - 2.0 * D2) * D8 * 2.0 * exp2;
ddZdD += fx[52] * temp;
// n =54
temp = -1.0 * D8 * exp1 + (8.0 - D1) * 8.0 * D7 * exp1;
temp -= (8.0 - D1) * D8 * exp1;
ddZdD += fx[53] * temp;
// n =55..56
temp = -4.0 * D1 * D8 * exp2 + (8.0 - 2.0 * D2) * 8.0 * D7 * exp2;
temp -= (8.0 - 2.0 * D2) * D8 * 2.0 * D1 * exp2;
ddZdD += fx[54] * temp;
ddZdD += fx[55] * temp;
// n =57..58
temp = -4.0 * D2 * D8 * exp2 + (9.0 - 2.0 * D2) * 9.0 * D8 * exp2;
temp -= (9.0 - 2.0 * D2) * D2 * D8 * 2.0 * exp2;
ddZdD += fx[56] * temp;
ddZdD += fx[57] * temp;
ddZdD *= dKp3;
return ddZdD;
}
public void relativedensity(GasProps gasProps) {
double dBX, dZa;
double dMWair = 28.96256;
dBX = -0.12527 + 5.91e-4 * gasProps.dTb - 6.62e-7 * gasProps.dTb * gasProps.dTb;
// calculate compressibility of air
dZa = 1.0 + (dBX * dP) / (GasConstants.RGASKJ * gasProps.dTb);
// calculate ideal gas and real gas relative densities
gasProps.dRD_Ideal = gasProps.dMrx / dMWair;
gasProps.dRD_Real = gasProps.dRD_Ideal * (dZa / gasProps.dZb);
}
}