新建RT项目,添加LED控制

This commit is contained in:
ldeyun 2025-07-23 16:43:26 +08:00
commit 02edc8a981
2836 changed files with 1251502 additions and 0 deletions

1287
.config Normal file

File diff suppressed because it is too large Load Diff

227
.cproject Normal file
View File

@ -0,0 +1,227 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?fileVersion 4.0.0?><cproject storage_type_id="org.eclipse.cdt.core.XmlProjectDescriptionStorage">
<storageModule moduleId="org.eclipse.cdt.core.settings">
<cconfiguration id="ilg.gnuarmeclipse.managedbuild.cross.config.elf.debug.553091094">
<storageModule buildSystemId="org.eclipse.cdt.managedbuilder.core.configurationDataProvider" id="ilg.gnuarmeclipse.managedbuild.cross.config.elf.debug.553091094" moduleId="org.eclipse.cdt.core.settings" name="Debug">
<externalSettings/>
<extensions>
<extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/>
<extension id="org.eclipse.cdt.core.GASErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GmakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GLDErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.CWDLocator" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GCCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
</extensions>
</storageModule>
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
<configuration artifactName="rtthread" buildArtefactType="org.eclipse.cdt.build.core.buildArtefactType.exe" buildProperties="org.eclipse.cdt.build.core.buildArtefactType=org.eclipse.cdt.build.core.buildArtefactType.exe,org.eclipse.cdt.build.core.buildType=org.eclipse.cdt.build.core.buildType.debug" cleanCommand="${cross_rm} -rf" description="" id="ilg.gnuarmeclipse.managedbuild.cross.config.elf.debug.553091094" name="Debug" parent="ilg.gnuarmeclipse.managedbuild.cross.config.elf.debug">
<folderInfo id="ilg.gnuarmeclipse.managedbuild.cross.config.elf.debug.553091094." name="/" resourcePath="">
<toolChain id="ilg.gnuarmeclipse.managedbuild.cross.toolchain.elf.debug.1201710416" name="ARM Cross GCC" superClass="ilg.gnuarmeclipse.managedbuild.cross.toolchain.elf.debug">
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.addtools.createflash.251260409" name="Create flash image" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.addtools.createflash" useByScannerDiscovery="false" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.addtools.createlisting.1365878149" name="Create extended listing" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.addtools.createlisting" useByScannerDiscovery="false"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.addtools.printsize.709136944" name="Print size" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.addtools.printsize" useByScannerDiscovery="false" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.optimization.level.1986446770" name="Optimization Level" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.optimization.level" useByScannerDiscovery="true" value="ilg.gnuarmeclipse.managedbuild.cross.option.optimization.level.none" valueType="enumerated"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.optimization.messagelength.1312975261" name="Message length (-fmessage-length=0)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.optimization.messagelength" useByScannerDiscovery="true" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.optimization.signedchar.1538128212" name="'char' is signed (-fsigned-char)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.optimization.signedchar" useByScannerDiscovery="true" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.optimization.functionsections.2136804218" name="Function sections (-ffunction-sections)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.optimization.functionsections" useByScannerDiscovery="true" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.optimization.datasections.244767666" name="Data sections (-fdata-sections)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.optimization.datasections" useByScannerDiscovery="true" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.debugging.level.1055848773" name="Debug level" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.debugging.level" useByScannerDiscovery="true" value="ilg.gnuarmeclipse.managedbuild.cross.option.debugging.level.default" valueType="enumerated"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.debugging.format.501941135" name="Debug format" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.debugging.format" useByScannerDiscovery="true" value="ilg.gnuarmeclipse.managedbuild.cross.option.debugging.format.dwarf2" valueType="enumerated"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.toolchain.name.1696308067" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.toolchain.name" useByScannerDiscovery="false" value="GNU Tools for ARM Embedded Processors" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.architecture.1558403188" name="Architecture" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.architecture" useByScannerDiscovery="false" value="ilg.gnuarmeclipse.managedbuild.cross.option.architecture.arm" valueType="enumerated"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.family.749415257" name="ARM family" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.family" useByScannerDiscovery="false" value="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.mcpu.cortex-m7" valueType="enumerated"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.instructionset.2114153533" name="Instruction set" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.instructionset" useByScannerDiscovery="false" value="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.instructionset.thumb" valueType="enumerated"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.command.prefix.1600865811" name="Prefix" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.command.prefix" useByScannerDiscovery="false" value="arm-none-eabi-" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.command.c.1109963929" name="C compiler" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.command.c" useByScannerDiscovery="false" value="gcc" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.command.cpp.1040883831" name="C++ compiler" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.command.cpp" useByScannerDiscovery="false" value="g++" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.command.ar.1678200391" name="Archiver" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.command.ar" useByScannerDiscovery="false" value="ar" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.command.objcopy.1171840296" name="Hex/Bin converter" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.command.objcopy" useByScannerDiscovery="false" value="objcopy" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.command.objdump.342604837" name="Listing generator" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.command.objdump" useByScannerDiscovery="false" value="objdump" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.command.size.898269225" name="Size command" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.command.size" useByScannerDiscovery="false" value="size" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.command.make.2016398076" name="Build command" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.command.make" useByScannerDiscovery="false" value="make" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.command.rm.1606171496" name="Remove command" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.command.rm" useByScannerDiscovery="false" value="rm" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.toolchain.id.540792084" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.toolchain.id" useByScannerDiscovery="false" value="1287942917" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.architecture.430121817" name="Architecture" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.architecture" useByScannerDiscovery="false" value="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.arch.none" valueType="enumerated"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.fpu.abi.966735324" name="Float ABI" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.fpu.abi" useByScannerDiscovery="true" value="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.fpu.abi.hard" valueType="enumerated"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.warnings.allwarn.1381561249" name="Enable all common warnings (-Wall)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.warnings.allwarn" useByScannerDiscovery="true" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.target.other.2041717463" name="Other target flags" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.target.other" useByScannerDiscovery="true" value="" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.fpu.unit.1463655269" name="FPU Type" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.fpu.unit" useByScannerDiscovery="true" value="ilg.gnuarmeclipse.managedbuild.cross.option.arm.target.fpu.unit.fpv5spd16" valueType="enumerated"/>
<targetPlatform archList="all" binaryParser="org.eclipse.cdt.core.ELF" id="ilg.gnuarmeclipse.managedbuild.cross.targetPlatform.1798638225" isAbstract="false" osList="all" superClass="ilg.gnuarmeclipse.managedbuild.cross.targetPlatform"/>
<builder buildPath="${workspace_loc:/qemu-vexpress-a9}/Debug" cleanBuildTarget="clean2" id="ilg.gnuarmeclipse.managedbuild.cross.builder.1736709688" keepEnvironmentInBuildfile="false" managedBuildOn="true" name="GNU Make Builder" parallelBuildOn="true" parallelizationNumber="optimal" superClass="ilg.gnuarmeclipse.managedbuild.cross.builder"/>
<tool id="ilg.gnuarmeclipse.managedbuild.cross.tool.assembler.1810966071" name="GNU ARM Cross Assembler" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.assembler">
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.assembler.usepreprocessor.1072524326" name="Use preprocessor" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.assembler.usepreprocessor" useByScannerDiscovery="false" value="true" valueType="boolean"/>
<option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="ilg.gnuarmeclipse.managedbuild.cross.option.assembler.include.paths.161242639" name="Include paths (-I)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.assembler.include.paths" useByScannerDiscovery="true" valueType="includePath">
<listOptionValue builtIn="false" value="&quot;${workspace_loc:/${ProjName}}&quot;"/>
</option>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.assembler.defs.1521934876" name="Defined symbols (-D)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.assembler.defs" useByScannerDiscovery="true"/>
<option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="ilg.gnuarmeclipse.managedbuild.cross.option.assembler.flags.1325367962" name="Assembler flags" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.assembler.flags" useByScannerDiscovery="false" valueType="stringList">
<listOptionValue builtIn="false" value="-mimplicit-it=thumb"/>
</option>
<inputType id="ilg.gnuarmeclipse.managedbuild.cross.tool.assembler.input.1843333483" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.assembler.input"/>
</tool>
<tool id="ilg.gnuarmeclipse.managedbuild.cross.tool.c.compiler.1570350559" name="GNU ARM Cross C Compiler" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.c.compiler">
<option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="ilg.gnuarmeclipse.managedbuild.cross.option.c.compiler.include.paths.634882052" name="Include paths (-I)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.compiler.include.paths" useByScannerDiscovery="true" valueType="includePath">
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/drivers}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/drivers//include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/drivers//include//config}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/libraries//CMSIS//Device//ST//STM32H7xx//Include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/libraries//CMSIS//Include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/libraries//CMSIS//RTOS//Template}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/libraries//STM32H7xx_HAL_Driver//Inc}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/libraries//STM32H7xx_HAL_Driver//Inc//Legacy}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/.}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/applications}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//.}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/drivers/include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/finsh}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/compilers/common/include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/compilers/newlib}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/posix/io/epoll}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/posix/io/eventfd}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/posix/io/poll}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/posix/ipc}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/libcpu/arm/common}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/libcpu/arm/cortex-m7}&quot;"/>
</option>
<option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="ilg.gnuarmeclipse.managedbuild.cross.option.c.compiler.defs.100549972" name="Defined symbols (-D)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.compiler.defs" useByScannerDiscovery="true" valueType="definedSymbols">
<listOptionValue builtIn="false" value="SOC_FAMILY_STM32"/>
<listOptionValue builtIn="false" value="SOC_SERIES_STM32H7"/>
<listOptionValue builtIn="false" value="USE_HAL_DRIVER"/>
<listOptionValue builtIn="false" value="STM32H750xx"/>
</option>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.c.compiler.other.2133065240" name="Other compiler flags" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.compiler.other" useByScannerDiscovery="true" value="" valueType="string"/>
<option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="ilg.gnuarmeclipse.managedbuild.cross.option.c.compiler.include.files.714348818" name="Include files (-include)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.compiler.include.files" useByScannerDiscovery="true" valueType="includeFiles">
<listOptionValue builtIn="false" value="&quot;${workspace_loc:/${ProjName}/rtconfig_preinc.h}&quot;"/>
</option>
<inputType id="ilg.gnuarmeclipse.managedbuild.cross.tool.c.compiler.input.992053063" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.c.compiler.input"/>
</tool>
<tool id="ilg.gnuarmeclipse.managedbuild.cross.tool.c.linker.869072473" name="Cross ARM C Linker" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.c.linker">
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.gcsections.1167322178" name="Remove unused sections (-Xlinker --gc-sections)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.gcsections" useByScannerDiscovery="false" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.nostart.351692886" name="Do not use standard start files (-nostartfiles)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.nostart" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.nostdlibs.1009243715" name="No startup or default libs (-nostdlib)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.nostdlibs" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.nodeflibs.2016026082" name="Do not use default libraries (-nodefaultlibs)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.nodeflibs" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.usenewlibnano.923990336" name="Use newlib-nano (--specs=nano.specs)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.usenewlibnano" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option defaultValue="true" id="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.shared.548869459" name="Shared (-shared)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.shared" useByScannerDiscovery="false" valueType="boolean"/>
<option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.scriptfile.1818777301" name="Script files (-T)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.scriptfile" useByScannerDiscovery="false" valueType="stringList">
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//linkscripts//STM32H750XBHx//link.lds}&quot;"/>
</option>
<option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.libs.1135656995" name="Libraries (-l)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.libs" useByScannerDiscovery="false" valueType="libs">
<listOptionValue builtIn="false" value="c "/>
<listOptionValue builtIn="false" value="m "/>
</option>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.paths.36884122" name="Library search path (-L)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.paths" useByScannerDiscovery="false"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.other.396049466" name="Other linker flags" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.other" useByScannerDiscovery="false" value="" valueType="string"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.cref.1645737861" name="Cross reference (-Xlinker --cref)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.c.linker.cref" useByScannerDiscovery="false" value="true" valueType="boolean"/>
<inputType id="ilg.gnuarmeclipse.managedbuild.cross.tool.c.linker.input.334732222" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.c.linker.input">
<additionalInput kind="additionalinputdependency" paths="$(USER_OBJS)"/>
<additionalInput kind="additionalinput" paths="$(LIBS)"/>
</inputType>
</tool>
<tool id="ilg.gnuarmeclipse.managedbuild.cross.tool.cpp.linker.1601059928" name="GNU ARM Cross C++ Linker" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.cpp.linker">
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.gcsections.437759352" name="Remove unused sections (-Xlinker --gc-sections)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.gcsections" value="true" valueType="boolean"/>
<option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.scriptfile.1101974459" name="Script files (-T)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.scriptfile" useByScannerDiscovery="false" valueType="stringList">
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//linkscripts//STM32H750XBHx//link.lds}&quot;"/>
</option>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.cref.2007675975" name="Cross reference (-Xlinker --cref)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.cref" useByScannerDiscovery="false" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.usenewlibnano.2105838438" name="Use newlib-nano (--specs=nano.specs)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.usenewlibnano" useByScannerDiscovery="false" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.libs.934137837" name="Libraries (-l)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.libs" useByScannerDiscovery="false"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.nostart.2118356996" name="Do not use standard start files (-nostartfiles)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.nostart" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.nodeflibs.1427884346" name="Do not use default libraries (-nodefaultlibs)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.nodeflibs" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.nostdlibs.1433863653" name="No startup or default libs (-nostdlib)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.nostdlibs" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.printgcsections.1387745410" name="Print removed sections (-Xlinker --print-gc-sections)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.printgcsections" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.strip.1230158061" name="Omit all symbol information (-s)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.strip" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.printmap.1307581821" name="Print link map (-Xlinker --print-map)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.printmap" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.useprintffloat.960778920" name="Use float with nano printf (-u _printf_float)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.useprintffloat" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.usescanffloat.637205035" name="Use float with nano scanf (-u _scanf_float)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.usescanffloat" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.usenewlibnosys.1948314201" name="Do not use syscalls (--specs=nosys.specs)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.usenewlibnosys" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.verbose.273162112" name="Verbose (-v)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.verbose" useByScannerDiscovery="false" value="false" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.paths.1399535143" name="Library search path (-L)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.linker.paths" useByScannerDiscovery="false"/>
<inputType id="ilg.gnuarmeclipse.managedbuild.cross.tool.cpp.linker.input.262373798" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.cpp.linker.input">
<additionalInput kind="additionalinputdependency" paths="$(USER_OBJS)"/>
<additionalInput kind="additionalinput" paths="$(LIBS)"/>
</inputType>
</tool>
<tool id="ilg.gnuarmeclipse.managedbuild.cross.tool.archiver.506412204" name="GNU ARM Cross Archiver" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.archiver"/>
<tool id="ilg.gnuarmeclipse.managedbuild.cross.tool.createflash.1461589245" name="GNU ARM Cross Create Flash Image" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.createflash">
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.createflash.choice.1937707052" name="Output file format (-O)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.createflash.choice" useByScannerDiscovery="false" value="ilg.gnuarmeclipse.managedbuild.cross.option.createflash.choice.binary" valueType="enumerated"/>
</tool>
<tool id="ilg.gnuarmeclipse.managedbuild.cross.tool.createlisting.82359725" name="GNU ARM Cross Create Listing" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.createlisting">
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.createlisting.source.601724476" name="Display source (--source|-S)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.createlisting.source" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.createlisting.allheaders.692505279" name="Display all headers (--all-headers|-x)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.createlisting.allheaders" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.createlisting.demangle.97345172" name="Demangle names (--demangle|-C)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.createlisting.demangle" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.createlisting.linenumbers.1342893377" name="Display line numbers (--line-numbers|-l)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.createlisting.linenumbers" value="true" valueType="boolean"/>
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.createlisting.wide.1533725981" name="Wide lines (--wide|-w)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.createlisting.wide" value="true" valueType="boolean"/>
</tool>
<tool id="ilg.gnuarmeclipse.managedbuild.cross.tool.printsize.1073550295" name="GNU ARM Cross Print Size" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.printsize">
<option id="ilg.gnuarmeclipse.managedbuild.cross.option.printsize.format.946451386" name="Size format" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.printsize.format" useByScannerDiscovery="false"/>
</tool>
<tool id="ilg.gnuarmeclipse.managedbuild.cross.tool.cpp.compiler.1302177015" name="GNU ARM Cross C++ Compiler" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.cpp.compiler">
<option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.compiler.defs.704468062" name="Defined symbols (-D)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.compiler.defs" useByScannerDiscovery="true" valueType="definedSymbols">
<listOptionValue builtIn="false" value="SOC_FAMILY_STM32"/>
<listOptionValue builtIn="false" value="SOC_SERIES_STM32H7"/>
<listOptionValue builtIn="false" value="USE_HAL_DRIVER"/>
<listOptionValue builtIn="false" value="STM32H750xx"/>
</option>
<option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.compiler.include.paths.302877723" name="Include paths (-I)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.compiler.include.paths" useByScannerDiscovery="true" valueType="includePath">
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/drivers}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/drivers//include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/drivers//include//config}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/libraries//CMSIS//Device//ST//STM32H7xx//Include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/libraries//CMSIS//Include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/libraries//CMSIS//RTOS//Template}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/libraries//STM32H7xx_HAL_Driver//Inc}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/libraries//STM32H7xx_HAL_Driver//Inc//Legacy}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/.}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}/applications}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//.}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/drivers/include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/finsh}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/compilers/common/include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/compilers/newlib}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/posix/io/epoll}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/posix/io/eventfd}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/posix/io/poll}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/components/libc/posix/ipc}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/include}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/libcpu/arm/common}&quot;"/>
<listOptionValue builtIn="false" value="&quot;${workspace_loc://${ProjName}//rt-thread/libcpu/arm/cortex-m7}&quot;"/>
</option>
<option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.compiler.include.files.343249373" name="Include files (-include)" superClass="ilg.gnuarmeclipse.managedbuild.cross.option.cpp.compiler.include.files" useByScannerDiscovery="true" valueType="includeFiles">
<listOptionValue builtIn="false" value="&quot;${workspace_loc:/${ProjName}/rtconfig_preinc.h}&quot;"/>
</option>
<inputType id="ilg.gnuarmeclipse.managedbuild.cross.tool.cpp.compiler.input.45918001" superClass="ilg.gnuarmeclipse.managedbuild.cross.tool.cpp.compiler.input"/>
</tool>
</toolChain>
</folderInfo>
<sourceEntries>
<entry excluding="//rt-thread/components/dfs|//rt-thread/components/drivers/audio|//rt-thread/components/drivers/can|//rt-thread/components/drivers/clk|//rt-thread/components/drivers/core/bus.c|//rt-thread/components/drivers/core/dm.c|//rt-thread/components/drivers/core/driver.c|//rt-thread/components/drivers/core/platform.c|//rt-thread/components/drivers/core/platform_ofw.c|//rt-thread/components/drivers/cputime|//rt-thread/components/drivers/fdt|//rt-thread/components/drivers/hwcrypto|//rt-thread/components/drivers/hwtimer|//rt-thread/components/drivers/i2c|//rt-thread/components/drivers/ktime|//rt-thread/components/drivers/misc|//rt-thread/components/drivers/mtd|//rt-thread/components/drivers/ofw|//rt-thread/components/drivers/phy|//rt-thread/components/drivers/pic|//rt-thread/components/drivers/pin/pin_dm.c|//rt-thread/components/drivers/pin/pin_ofw.c|//rt-thread/components/drivers/pinctrl|//rt-thread/components/drivers/pm|//rt-thread/components/drivers/rtc|//rt-thread/components/drivers/sdio|//rt-thread/components/drivers/sensor|//rt-thread/components/drivers/serial/serial_dm.c|//rt-thread/components/drivers/serial/serial_tty.c|//rt-thread/components/drivers/serial/serial_v2.c|//rt-thread/components/drivers/spi|//rt-thread/components/drivers/touch|//rt-thread/components/drivers/usb|//rt-thread/components/drivers/virtio|//rt-thread/components/drivers/watchdog|//rt-thread/components/drivers/wlan|//rt-thread/components/fal|//rt-thread/components/finsh/msh_file.c|//rt-thread/components/legacy|//rt-thread/components/libc/compilers/armlibc|//rt-thread/components/libc/compilers/dlib|//rt-thread/components/libc/compilers/musl|//rt-thread/components/libc/compilers/picolibc|//rt-thread/components/libc/cplusplus|//rt-thread/components/libc/posix|//rt-thread/components/lwp|//rt-thread/components/mm|//rt-thread/components/mprotect|//rt-thread/components/net|//rt-thread/components/utilities|//rt-thread/components/vbus|//rt-thread/libcpu/aarch64|//rt-thread/libcpu/arc|//rt-thread/libcpu/arm/AT91SAM7S|//rt-thread/libcpu/arm/AT91SAM7X|//rt-thread/libcpu/arm/am335x|//rt-thread/libcpu/arm/arm926|//rt-thread/libcpu/arm/armv6|//rt-thread/libcpu/arm/common/atomic_arm.c|//rt-thread/libcpu/arm/common/divsi3.S|//rt-thread/libcpu/arm/cortex-a|//rt-thread/libcpu/arm/cortex-m0|//rt-thread/libcpu/arm/cortex-m23|//rt-thread/libcpu/arm/cortex-m3|//rt-thread/libcpu/arm/cortex-m33|//rt-thread/libcpu/arm/cortex-m4|//rt-thread/libcpu/arm/cortex-m7/context_iar.S|//rt-thread/libcpu/arm/cortex-m7/context_rvds.S|//rt-thread/libcpu/arm/cortex-m7/mpu.c|//rt-thread/libcpu/arm/cortex-m85|//rt-thread/libcpu/arm/cortex-r4|//rt-thread/libcpu/arm/cortex-r52|//rt-thread/libcpu/arm/dm36x|//rt-thread/libcpu/arm/lpc214x|//rt-thread/libcpu/arm/lpc24xx|//rt-thread/libcpu/arm/realview-a8-vmm|//rt-thread/libcpu/arm/s3c24x0|//rt-thread/libcpu/arm/s3c44b0|//rt-thread/libcpu/arm/sep4020|//rt-thread/libcpu/arm/zynqmp-r5|//rt-thread/libcpu/avr32|//rt-thread/libcpu/blackfin|//rt-thread/libcpu/c-sky|//rt-thread/libcpu/ia32|//rt-thread/libcpu/m16c|//rt-thread/libcpu/mips|//rt-thread/libcpu/nios|//rt-thread/libcpu/ppc|//rt-thread/libcpu/risc-v|//rt-thread/libcpu/rx|//rt-thread/libcpu/sim|//rt-thread/libcpu/sparc-v8|//rt-thread/libcpu/ti-dsp|//rt-thread/libcpu/unicore32|//rt-thread/libcpu/v850|//rt-thread/libcpu/xilinx|//rt-thread/src/cpu.c|//rt-thread/src/memheap.c|//rt-thread/src/scheduler_mp.c|//rt-thread/src/signal.c|//rt-thread/src/slab.c|//rt-thread/tools" flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name=""/>
</sourceEntries>
</configuration>
</storageModule>
<storageModule moduleId="org.eclipse.cdt.core.externalSettings"/>
<storageModule moduleId="ilg.gnumcueclipse.managedbuild.packs"/>
</cconfiguration>
</storageModule>
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
<project id="qemu-vexpress-a9.ilg.gnuarmeclipse.managedbuild.cross.target.elf.860020518" name="Executable" projectType="ilg.gnuarmeclipse.managedbuild.cross.target.elf"/>
</storageModule>
<storageModule moduleId="scannerConfiguration">
<autodiscovery enabled="true" problemReportingEnabled="true" selectedProfileId=""/>
<scannerConfigBuildInfo instanceId="ilg.gnuarmeclipse.managedbuild.cross.config.elf.debug.553091094;ilg.gnuarmeclipse.managedbuild.cross.config.elf.debug.553091094.;ilg.gnuarmeclipse.managedbuild.cross.tool.c.compiler.1570350559;ilg.gnuarmeclipse.managedbuild.cross.tool.c.compiler.input.992053063">
<autodiscovery enabled="true" problemReportingEnabled="true" selectedProfileId=""/>
</scannerConfigBuildInfo>
</storageModule>
<storageModule moduleId="org.eclipse.cdt.core.LanguageSettingsProviders"/>
<storageModule moduleId="refreshScope" versionNumber="2">
<configuration configurationName="Debug">
<resource resourceType="PROJECT" workspacePath="/RTGasFlowMeter"/>
</configuration>
</storageModule>
<storageModule moduleId="org.eclipse.cdt.make.core.buildtargets"/>
<storageModule moduleId="org.eclipse.cdt.internal.ui.text.commentOwnerProjectMappings">
<doc-comment-owner id="org.eclipse.cdt.ui.doxygen">
<path value=""/>
</doc-comment-owner>
</storageModule>
</cproject>

36
.gitattributes vendored Normal file
View File

@ -0,0 +1,36 @@
# Sources
*.c text diff=c
*.cc text diff=cpp
*.cxx text diff=cpp
*.cpp text diff=cpp
*.c++ text diff=cpp
*.hpp text diff=cpp
*.h text diff=c
*.h++ text diff=cpp
*.hh text diff=cpp
# Compiled Object files
*.slo binary
*.lo binary
*.o binary
*.obj binary
# Precompiled Headers
*.gch binary
*.pch binary
# Compiled Dynamic libraries
*.so binary
*.dylib binary
*.dll binary
# Compiled Static libraries
*.lai binary
*.la binary
*.a binary
*.lib binary
# Executables
*.exe binary
*.out binary
*.app binary

37
.gitignore vendored Normal file
View File

@ -0,0 +1,37 @@
*.pyc
*.map
*.dblite
*.elf
*.bin
*.hex
*.axf
*.pdb
*.idb
*.ilk
*.old
build
Debug
*~
*.o
*.obj
*.out
*.bak
*.dep
*.lib
*.i
*.d
.DS_Stor*
.config 3
.config 4
.config 5
*.uimg
GPATH
GRTAGS
GTAGS
.vscode
JLinkLog.txt
JLinkSettings.ini
DebugConfig/
RTE/
settings/
*.uvguix*

29
.project Normal file
View File

@ -0,0 +1,29 @@
<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
<name>RTGasFlowMeter</name>
<comment />
<projects>
</projects>
<buildSpec>
<buildCommand>
<name>org.eclipse.cdt.managedbuilder.core.genmakebuilder</name>
<triggers>clean,full,incremental,</triggers>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>org.eclipse.cdt.managedbuilder.core.ScannerConfigBuilder</name>
<triggers>full,incremental,</triggers>
<arguments>
</arguments>
</buildCommand>
</buildSpec>
<natures>
<nature>org.eclipse.cdt.core.cnature</nature>
<nature>org.rt-thread.studio.rttnature</nature>
<nature>org.eclipse.cdt.managedbuilder.core.managedBuildNature</nature>
<nature>org.eclipse.cdt.managedbuilder.core.ScannerConfigNature</nature>
</natures>
<name>RTGasFlowMeter</name>
<linkedResources />
</projectDescription>

View File

@ -0,0 +1,64 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<launchConfiguration type="ilg.gnumcueclipse.debug.gdbjtag.pyocd.launchConfigurationType">
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.adapterName" value="DAP-LINK"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.binFlashStartAddress" value="0x08000000"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doContinue" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doDebugInRam" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doFirstReset" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doGdbServerAllocateConsole" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doSecondReset" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.doStartGdbServer" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.enableSemihosting" value="true"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.firstResetType" value="init"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbClientOtherCommands" value="set mem inaccessible-by-default off"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbClientOtherOptions" value=""/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerBusSpeed" value="1000000"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerConnectionAddress" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerDeviceName" value="STM32H750XBHx"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerEnableSemihosting" value="false"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerExecutable" value="${debugger_install_path}/${daplink_debugger_relative_path}\pyocd.exe"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerFlashMode" value="0"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerGdbPortNumber" value="3333"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerOther" value=""/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.gdbServerTelnetPortNumber" value="4444"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.otherInitCommands" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.otherRunCommands" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.programMode" value="BIN"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.pyocd.secondResetType" value="halt"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.svdPath" value="${studio_install_path}repo\Extract\Chip_Support_Packages\RealThread\STM32H7\0.1.9\debug\svd\STM32H750x.svd"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageOffset" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.ipAddress" value="localhost"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.jtagDevice" value="GNU MCU PyOCD"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.pcRegister" value=""/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.portNumber" value="3333"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setPcRegister" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setResume" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setStopAt" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.stopAt" value="main"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsOffset" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForImage" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForSymbols" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForSymbols" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useRemoteTarget" value="true"/>
<stringAttribute key="org.eclipse.cdt.dsf.gdb.DEBUG_NAME" value="${rtt_gnu_gcc}/arm-none-eabi-gdb.exe"/>
<booleanAttribute key="org.eclipse.cdt.dsf.gdb.UPDATE_THREADLIST_ON_SUSPEND" value="false"/>
<intAttribute key="org.eclipse.cdt.launch.ATTR_BUILD_BEFORE_LAUNCH_ATTR" value="0"/>
<stringAttribute key="org.eclipse.cdt.launch.PROGRAM_NAME" value="Debug/rtthread.elf"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_ATTR" value="RTGasFlowMeter"/>
<booleanAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_AUTO_ATTR" value="false"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_ID_ATTR" value=""/>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_PATHS">
<listEntry value="/RTGasFlowMeter"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_TYPES">
<listEntry value="4"/>
</listAttribute>
<stringAttribute key="org.eclipse.debug.core.source_locator_id" value="org.eclipse.cdt.debug.core.sourceLocator"/>
<stringAttribute key="org.eclipse.debug.core.source_locator_memento" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#13;&#10;&lt;sourceLookupDirector&gt;&#13;&#10;&lt;sourceContainers duplicates=&quot;false&quot;&gt;&#13;&#10;&lt;container memento=&quot;&amp;lt;?xml version=&amp;quot;1.0&amp;quot; encoding=&amp;quot;UTF-8&amp;quot; standalone=&amp;quot;no&amp;quot;?&amp;gt;&amp;#13;&amp;#10;&amp;lt;default/&amp;gt;&amp;#13;&amp;#10;&quot; typeId=&quot;org.eclipse.debug.core.containerType.default&quot;/&gt;&#13;&#10;&lt;/sourceContainers&gt;&#13;&#10;&lt;/sourceLookupDirector&gt;&#13;&#10;"/>
<stringAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_ENCODING" value="UTF-8"/>
</launchConfiguration>

View File

@ -0,0 +1,91 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<launchConfiguration type="ilg.gnumcueclipse.debug.gdbjtag.jlink.launchConfigurationType">
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.adapterName" value="J-Link"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.binFileStartAddress" value=""/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doConnectToRunning" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doContinue" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doDebugInRam" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doFirstReset" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerAllocateConsole" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerAllocateSemihostingConsole" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerInitRegs" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerLocalOnly" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerSilent" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doGdbServerVerifyDownload" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doSecondReset" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.doStartGdbServer" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.enableFlashBreakpoints" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.enableSemihosting" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.enableSemihostingIoclientGdbClient" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.enableSemihostingIoclientTelnet" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.enableSwo" value="true"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.eraseEndAddress" value=""/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.eraseMode" value="0"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.eraseStartAddress" value=""/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.firstResetSpeed" value="1000"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.firstResetType" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.flashDeviceName" value="STM32H750XBHx"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.flashDownloadHex" value="false"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbClientOtherCommands" value="set mem inaccessible-by-default off"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbClientOtherOptions" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerConnection" value="usb"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerConnectionAddress" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerDebugInterface" value="swd"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerDeviceEndianness" value="little"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerDeviceName" value="STM32H750XBHx"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerDeviceSpeed" value="1000"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerExecutable" value="${debugger_install_path}/${jlink_debugger_relative_path}\JLinkGDBServerCL.exe"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerGdbPortNumber" value="2331"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerLog" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerOther" value="-singlerun"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerRunAfterStopDebug" value="true"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerSwoPortNumber" value="2332"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.gdbServerTelnetPortNumber" value="2333"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.interfaceSpeed" value="auto"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.jlinkExecutable" value="${debugger_install_path}/${jlink_debugger_relative_path}\JLink.exe"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.otherInitCommands" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.otherRunCommands" value=""/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.runAfterDownload" value="true"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.secondResetType" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.serailBaudRate" value="115200"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.serailPort" value=""/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.swoEnableTargetCpuFreq" value="0"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.swoEnableTargetPortMask" value="0x1"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.jlink.swoEnableTargetSwoFreq" value="0"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.svdPath" value="${studio_install_path}\repo\Extract\Chip_Support_Packages\RealThread\STM32H7\0.1.9\debug\svd\STM32H750x.svd"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageOffset" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.jtagDevice" value="GNU MCU J-Link"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.pcRegister" value=""/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.portNumber" value="2331"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setPcRegister" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setResume" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setStopAt" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.stopAt" value="main"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsOffset" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForImage" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForSymbols" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForSymbols" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useRemoteTarget" value="true"/>
<stringAttribute key="org.eclipse.cdt.dsf.gdb.DEBUG_NAME" value="${rtt_gnu_gcc}/arm-none-eabi-gdb.exe"/>
<booleanAttribute key="org.eclipse.cdt.dsf.gdb.UPDATE_THREADLIST_ON_SUSPEND" value="false"/>
<intAttribute key="org.eclipse.cdt.launch.ATTR_BUILD_BEFORE_LAUNCH_ATTR" value="0"/>
<stringAttribute key="org.eclipse.cdt.launch.PROGRAM_NAME" value="Debug/rtthread.elf"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_ATTR" value="RTGasFlowMeter"/>
<booleanAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_AUTO_ATTR" value="false"/>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_PATHS">
<listEntry value="/RTGasFlowMeter"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_TYPES">
<listEntry value="4"/>
</listAttribute>
<stringAttribute key="org.eclipse.debug.core.source_locator_id" value="org.eclipse.cdt.debug.core.sourceLocator"/>
<stringAttribute key="org.eclipse.debug.core.source_locator_memento" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#13;&#10;&lt;sourceLookupDirector&gt;&#13;&#10;&lt;sourceContainers duplicates=&quot;false&quot;&gt;&#13;&#10;&lt;container memento=&quot;&amp;lt;?xml version=&amp;quot;1.0&amp;quot; encoding=&amp;quot;UTF-8&amp;quot; standalone=&amp;quot;no&amp;quot;?&amp;gt;&amp;#13;&amp;#10;&amp;lt;default/&amp;gt;&amp;#13;&amp;#10;&quot; typeId=&quot;org.eclipse.debug.core.containerType.default&quot;/&gt;&#13;&#10;&lt;/sourceContainers&gt;&#13;&#10;&lt;/sourceLookupDirector&gt;&#13;&#10;"/>
<stringAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_ENCODING" value="UTF-8"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_OUTPUT_ON" value="true"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_LAUNCH_IN_BACKGROUND" value="true"/>
</launchConfiguration>

View File

@ -0,0 +1,58 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<launchConfiguration type="ilg.gnumcueclipse.debug.gdbjtag.qemu.launchConfigurationType">
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.doContinue" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.doDebugInRam" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.doFirstReset" value="false"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.doSecondReset" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.doStartGdbServer" value="true"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.enableSemihosting" value="true"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbClientOtherCommands" value="set mem inaccessible-by-default off&#10;"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbClientOtherOptions" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerBoardModel" value="?"/>
<intAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerCpuQuantity" value="1"/>
<booleanAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerEnableNetwork" value="false"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerExecutable" value="${debugger_install_path}/${qemu_debugger_relative_path}\qemu-system-arm.exe"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerExtraQemuCmd" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerSdcardMemory" value="64.0"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerSerialPort" value="COM1"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerStartup" value="${studio_install_path}/repo/Extract/Debugger_Support_Packages/RealThread/QEMU/4.2.0.4/qemu-system-arm.exe -M ? -sd sd.bin -nographic -S -s"/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.gdbServerTapName" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.otherInitCommands" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.qemu.otherRunCommands" value=""/>
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.svdPath" value="${studio_install_path}\repo\Extract\Chip_Support_Packages\RealThread\STM32H7\0.1.9\debug\svd\STM32H750x.svd"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageOffset" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.jtagDevice" value="GNU MCU QEMU"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.pcRegister" value=""/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.portNumber" value="1234"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setPcRegister" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setResume" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setStopAt" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.stopAt" value="main"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsOffset" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForImage" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForSymbols" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForSymbols" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useRemoteTarget" value="true"/>
<stringAttribute key="org.eclipse.cdt.dsf.gdb.DEBUG_NAME" value="${cross_prefix}gdb${cross_suffix}"/>
<booleanAttribute key="org.eclipse.cdt.dsf.gdb.UPDATE_THREADLIST_ON_SUSPEND" value="false"/>
<intAttribute key="org.eclipse.cdt.launch.ATTR_BUILD_BEFORE_LAUNCH_ATTR" value="0"/>
<stringAttribute key="org.eclipse.cdt.launch.PROGRAM_NAME" value="Debug/rtthread.elf"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_ATTR" value="RTGasFlowMeter"/>
<booleanAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_AUTO_ATTR" value="false"/>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_PATHS">
<listEntry value="/RTGasFlowMeter"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_TYPES">
<listEntry value="4"/>
</listAttribute>
<stringAttribute key="org.eclipse.debug.core.source_locator_id" value="org.eclipse.cdt.debug.core.sourceLocator"/>
<stringAttribute key="org.eclipse.debug.core.source_locator_memento" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#13;&#10;&lt;sourceLookupDirector&gt;&#13;&#10;&lt;sourceContainers duplicates=&quot;false&quot;&gt;&#13;&#10;&lt;container memento=&quot;&amp;lt;?xml version=&amp;quot;1.0&amp;quot; encoding=&amp;quot;UTF-8&amp;quot; standalone=&amp;quot;no&amp;quot;?&amp;gt;&amp;#13;&amp;#10;&amp;lt;default/&amp;gt;&amp;#13;&amp;#10;&quot; typeId=&quot;org.eclipse.debug.core.containerType.default&quot;/&gt;&#13;&#10;&lt;/sourceContainers&gt;&#13;&#10;&lt;/sourceLookupDirector&gt;&#13;&#10;"/>
<stringAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_ENCODING" value="UTF-8"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_OUTPUT_ON" value="true"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_LAUNCH_IN_BACKGROUND" value="true"/>
</launchConfiguration>

View File

@ -0,0 +1,57 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<launchConfiguration type="org.rtthread.studio.debug.gdbjtag.stlink.launchConfigurationType">
<stringAttribute key="ilg.gnumcueclipse.debug.gdbjtag.svdPath" value="${studio_install_path}\repo\Extract\Chip_Support_Packages\RealThread\STM32H7\0.1.9\debug\svd\STM32H750x.svd"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.connectMode" value="NORMAL"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.debugInterface" value="SWD"/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.delay" value="3"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.doHalt" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.doReset" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.flashVerify" value="false"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageOffset" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.initCommands" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.ipAddress" value="localhost"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.jtagDeviceId" value="org.eclipse.cdt.debug.gdbjtag.core.jtagdevice.genericDevice"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.otherDownloadOption" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.otherGdbserverOption" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.pcRegister" value=""/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.portNumber" value="61235"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.resetMode" value=" -hardRst"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.resetRun" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.runCommands" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setPcRegister" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setStopAt" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.stopAt" value="main"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsOffset" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForImage" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForSymbols" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.dsf.gdb.DEBUG_NAME" value="${rtt_gnu_gcc}/arm-none-eabi-gdb.exe"/>
<booleanAttribute key="org.eclipse.cdt.dsf.gdb.UPDATE_THREADLIST_ON_SUSPEND" value="false"/>
<intAttribute key="org.eclipse.cdt.launch.ATTR_BUILD_BEFORE_LAUNCH_ATTR" value="0"/>
<stringAttribute key="org.eclipse.cdt.launch.DEBUGGER_START_MODE" value="remote"/>
<stringAttribute key="org.eclipse.cdt.launch.PROGRAM_NAME" value="Debug/rtthread.elf"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_ATTR" value="RTGasFlowMeter"/>
<booleanAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_AUTO_ATTR" value="false"/>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_PATHS">
<listEntry value="/RTGasFlowMeter"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_TYPES">
<listEntry value="4"/>
</listAttribute>
<stringAttribute key="org.eclipse.debug.core.source_locator_id" value="org.eclipse.cdt.debug.core.sourceLocator"/>
<stringAttribute key="org.eclipse.debug.core.source_locator_memento" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#13;&#10;&lt;sourceLookupDirector&gt;&#13;&#10;&lt;sourceContainers duplicates=&quot;false&quot;&gt;&#13;&#10;&lt;container memento=&quot;&amp;lt;?xml version=&amp;quot;1.0&amp;quot; encoding=&amp;quot;UTF-8&amp;quot; standalone=&amp;quot;no&amp;quot;?&amp;gt;&amp;#13;&amp;#10;&amp;lt;default/&amp;gt;&amp;#13;&amp;#10;&quot; typeId=&quot;org.eclipse.debug.core.containerType.default&quot;/&gt;&#13;&#10;&lt;/sourceContainers&gt;&#13;&#10;&lt;/sourceLookupDirector&gt;&#13;&#10;"/>
<stringAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_ENCODING" value="UTF-8"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_CONSOLE_OUTPUT_ON" value="true"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_LAUNCH_IN_BACKGROUND" value="true"/>
<stringAttribute key="org.rtthread.studio.stlink.debug.gdbjtag.adapterName" value="ST-LINK"/>
<booleanAttribute key="org.rtthread.studio.stlink.debug.gdbjtag.doContinue" value="true"/>
<stringAttribute key="org.rtthread.studio.stlink.debug.gdbjtag.gdbServerDeviceName" value="STM32H750XBHx"/>
<stringAttribute key="org.rtthread.studio.stlink.debug.gdbjtag.gdbServerExecutable" value="${debugger_install_path}/${stlink_debugger_relative_path}/ST-LINK_gdbserver.exe"/>
<stringAttribute key="org.rtthread.studio.stlink.debug.gdbjtag.stlinkGdbServer" value="${debugger_install_path}/${stlink_debugger_relative_path}/tools/bin/STM32_Programmer_CLI.exe"/>
<booleanAttribute key="org.rtthread.studio.stlink.debug.gdbjtag.useRemoteTarget" value="true"/>
</launchConfiguration>

View File

@ -0,0 +1,2 @@
eclipse.preferences.version=1
toolchain.path.1287942917=${toolchain_install_path}/ARM/GNU_Tools_for_ARM_Embedded_Processors/5.4.1/bin

View File

@ -0,0 +1,14 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project>
<configuration id="ilg.gnuarmeclipse.managedbuild.cross.config.elf.debug.553091094" name="Debug">
<extension point="org.eclipse.cdt.core.LanguageSettingsProvider">
<provider copy-of="extension" id="org.eclipse.cdt.ui.UserLanguageSettingsProvider"/>
<provider-reference id="org.eclipse.cdt.core.ReferencedProjectsLanguageSettingsProvider" ref="shared-provider"/>
<provider-reference id="org.eclipse.cdt.managedbuilder.core.MBSLanguageSettingsProvider" ref="shared-provider"/>
<provider class="org.eclipse.cdt.managedbuilder.language.settings.providers.GCCBuiltinSpecsDetector" console="false" env-hash="1351442960345975074" id="ilg.gnuarmeclipse.managedbuild.cross.GCCBuiltinSpecsDetector" keep-relative-paths="false" name="CDT ARM Cross GCC Built-in Compiler Settings " parameter="${COMMAND} ${FLAGS} ${cross_toolchain_flags} -E -P -v -dD &quot;${INPUTS}&quot;" prefer-non-shared="true">
<language-scope id="org.eclipse.cdt.core.gcc"/>
<language-scope id="org.eclipse.cdt.core.g++"/>
</provider>
</extension>
</configuration>
</project>

View File

@ -0,0 +1,2 @@
eclipse.preferences.version=1
encoding/<project>=UTF-8

View File

@ -0,0 +1,3 @@
content-types/enabled=true
content-types/org.eclipse.cdt.core.asmSource/file-extensions=s
eclipse.preferences.version=1

22
.settings/projcfg.ini Normal file
View File

@ -0,0 +1,22 @@
#RT-Thread Studio Project Configuration
#Mon Jul 21 09:49:22 CST 2025
project_type=rtt
chip_name=STM32H750XBHx
cpu_name=None
target_freq=180
clock_source=hsi
dvendor_name=STMicroelectronics
rx_pin_name=PA10
rtt_path=repo/Extract/RT-Thread_Source_Code/RT-Thread/5.1.0
source_freq=0
csp_path=repo/Extract/Chip_Support_Packages/RealThread/STM32H7/0.1.9
sub_series_name=STM32H750
selected_rtt_version=5.1.0
cfg_version=v3.0
tool_chain=gcc
uart_name=uart2
tx_pin_name=PA9
rtt_nano_path=
output_project_path=D\:/RT-ThreadStudio/workspace
hardware_adapter=DAP-LINK
project_name=RTGasFlowMeter

27
Kconfig Normal file
View File

@ -0,0 +1,27 @@
mainmenu "RT-Thread Configuration"
config BSP_DIR
string
option env="BSP_ROOT"
default "."
config RTT_DIR
string
option env="RTT_ROOT"
default "rt-thread"
config PKGS_DIR
string
option env="PKGS_ROOT"
default "packages"
source "$RTT_DIR/Kconfig"
source "$PKGS_DIR/Kconfig"
source "$PKGS_DIR/packages/misc/samples/Kconfig"
config RT_STUDIO_BUILT_IN
bool
select ARCH_ARM_CORTEX_M7
select RT_USING_COMPONENTS_INIT
select RT_USING_USER_MAIN
default y

15
SConscript Normal file
View File

@ -0,0 +1,15 @@
# for module compiling
import os
Import('RTT_ROOT')
from building import *
cwd = GetCurrentDir()
objs = []
list = os.listdir(cwd)
for d in list:
path = os.path.join(cwd, d)
if os.path.isfile(os.path.join(path, 'SConscript')):
objs = objs + SConscript(os.path.join(d, 'SConscript'))
Return('objs')

36
SConstruct Normal file
View File

@ -0,0 +1,36 @@
import os
import sys
import rtconfig
RTT_ROOT = os.path.normpath(os.getcwd() + '/rt-thread')
sys.path = sys.path + [os.path.join(RTT_ROOT, 'tools')]
try:
from building import *
except Exception as e:
print("Error message:", e.message)
print('Cannot found RT-Thread root directory, please check RTT_ROOT')
print(RTT_ROOT)
sys.exit(-1)
TARGET = 'rt-thread.elf'
DefaultEnvironment(tools=[])
env = Environment(tools = ['mingw'],
AS = rtconfig.AS, ASFLAGS = rtconfig.AFLAGS,
CC = rtconfig.CC, CCFLAGS = rtconfig.CFLAGS,
AR = rtconfig.AR, ARFLAGS = '-rc',
CXX = rtconfig.CXX, CXXFLAGS = rtconfig.CXXFLAGS,
LINK = rtconfig.LINK, LINKFLAGS = rtconfig.LFLAGS)
env.PrependENVPath('PATH', rtconfig.EXEC_PATH)
env.AppendUnique(CPPDEFINES = [])
Export('RTT_ROOT')
Export('rtconfig')
# prepare building environment
objs = PrepareBuilding(env, RTT_ROOT, has_libcpu=False)
# make a building
DoBuilding(TARGET, objs)

76
applications/LED/LED.c Normal file
View File

@ -0,0 +1,76 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-07-21 Administrator the first version
*/
#include "led.h"
#include <rtdevice.h>
#include <rtthread.h>
#include <board.h>
#define LED_PIN GET_PIN(B, 0) // RT-Thread 的 PIN 宏
#define LED_PIN1 GET_PIN(B, 1) // RT-Thread 的 PIN 宏
#define LED_PIN2 GET_PIN(B, 2) // RT-Thread 的 PIN 宏
static rt_thread_t led_thread = RT_NULL;
/* LED 线程入口函数 */
static void led_thread_entry(void *parameter)
{
rt_uint8_t led_state = 0;
/* 设置引脚为输出模式 */
rt_pin_mode(LED_PIN, PIN_MODE_OUTPUT);
rt_pin_mode(LED_PIN1, PIN_MODE_OUTPUT);
rt_pin_mode(LED_PIN2, PIN_MODE_OUTPUT);
while (1)
{
/* 切换 LED 状态 */
led_state = !led_state;
rt_pin_write(LED_PIN, led_state);
rt_pin_write(LED_PIN1, led_state);
rt_pin_write(LED_PIN2, led_state);
rt_thread_mdelay(200);
rt_pin_write(LED_PIN, led_state);
rt_pin_write(LED_PIN1, led_state);
rt_pin_write(LED_PIN2, !led_state);
rt_thread_mdelay(200);
rt_pin_write(LED_PIN, led_state);
rt_pin_write(LED_PIN1, !led_state);
rt_pin_write(LED_PIN2, !led_state);
rt_thread_mdelay(200);
rt_kprintf("meter: %d\n", led_state);
}
}
int controlLED(){
/* 创建线程 */
led_thread = rt_thread_create(
"led",
led_thread_entry,
RT_NULL,
512,
RT_THREAD_PRIORITY_MAX / 2,
20);
/* 启动线程 */
if (led_thread != RT_NULL)
{
rt_thread_startup(led_thread);
return RT_EOK;
}
else
{
return -RT_ERROR;
}
}

15
applications/LED/LED.h Normal file
View File

@ -0,0 +1,15 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-07-21 Administrator the first version
*/
#ifndef APPLICATIONS_LED_LED_H_
#define APPLICATIONS_LED_LED_H_
int controlLED();
#endif /* APPLICATIONS_LED_LED_H_ */

70
applications/main.c Normal file
View File

@ -0,0 +1,70 @@
/*
* Copyright (c) 2006-2025, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-07-21 RT-Thread first version
*/
#include <rtthread.h>
#include <board.h>
#define DBG_TAG "main"
#define DBG_LVL DBG_LOG
#include <rtdbg.h>
#include "./LED/LED.h"
#include "./usart/usart.h"
#include "./ngflowcal/FLowCal.h"
static rt_thread_t flowCal_thread = RT_NULL;
/* flowCal 线程入口函数 */
static void flowCal_thread_entry(void *parameter)
{
while (1)
{
//NGFlowCal();
/* 延时 500ms */
rt_thread_mdelay(1000);
}
}
int main(void)
{
/* 系统时钟初始化成480MHz */
//SystemClock_Config();
//打开LED灯
controlLED();
int count = 1;
/* 创建线程 */
flowCal_thread = rt_thread_create("flowCal", flowCal_thread_entry,
RT_NULL, 2048,
RT_THREAD_PRIORITY_MAX / 2, 20);
/* 启动线程 */
if (flowCal_thread != RT_NULL)
{
rt_thread_startup(flowCal_thread);
return RT_EOK;
}
else
{
return -RT_ERROR;
}
while (count++)
{
LOG_D("Hello RT-Thread!");
rt_thread_mdelay(1000);
}
return RT_EOK;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,120 @@
/*************************************************************************
* <EFBFBD>ļ<EFBFBD>: detail.h
**************************************************************************/
#ifndef _DETAIL_H
#define _DETAIL_H
#include "NGCal.h"
typedef struct Detail {
int iNCC;
int aiCID[21];
double dOldMixID;
double dOldPb;
double dOldTb;
double dOldPf;
double dOldTf;
double adAn[58];
double adUn[58];
double dMri[21];
double dEi[21];
double dKi[21];
double dGi[21];
double dQi[21];
double dFi[21];
double dSi[21];
double dWi[21];
double dEij[21][21];
double dUij[21][21];
double dKij[21][21];
double dGij[21][21];
double adTable6Eij[21][21];
double adTable6Uij[21][21];
double adTable6Kij[21][21];
double adTable6Gij[21][21];
double adTable5Qi[21];
double adTable5Fi[21];
double adTable5Si[21];
double adTable5Wi[21];
double dXi[21];
double dPCalc;
double dT;
double dP;
double dRhoTP;
double dB;
double adBcoef[18];
double adFn[58];
double fx[58];
double dU;
double dKp3;
double dW;
double dQp2;
double dF;
double dRho;
double dRhoL;
double dRhoH;
double dPRhoL;
double dPRhoH;
double dZ;
double ddZdT;
double dd2ZdT2;
double ddZdD;
double ddBdT;
double dd2BdT2;
} Detail;
Detail *Detail_Construct(void);
void Detail_Destroy(Detail *pDetail);
int Detail_compositionchange(Detail *pDetail, const NGParSTRUCT *pAGA10);
int Detail_table(Detail *pDetail);
void Detail_paramdl(Detail *pDetail);
void Detail_chardl(Detail *pDetail, NGParSTRUCT *pAGA10);
void Detail_dhvMol(Detail *pDetail, NGParSTRUCT *pAGA10);
void Detail_bvir(Detail *pDetail);
void Detail_temp(Detail *pDetail);
void Detail_braket(Detail *pDetail, NGParSTRUCT *pAGA10);
void Detail_pdetail(Detail *pDetail, double dRho);
void Detail_ddetail(Detail *pDetail, NGParSTRUCT *pAGA10);
void Detail_relativedensity(const Detail *pDetail, NGParSTRUCT *pAGA10);
double Detail_zdetail(Detail *pDetail, double dRho);
double Detail_dZdT(Detail *pDetail, double dRho);
double Detail_d2ZdT2(Detail *pDetail, double dRho);
double Detail_dZdD(Detail *pDetail, double dRho);
void Detail_Run(Detail *pDetail, NGParSTRUCT *ptNGPar);
#endif

View File

@ -0,0 +1,732 @@
//
// Created by ldeyu on 2025/7/7.
//
#include "NGCal.h"
#include "FlowCal.h"
#include "math.h"
#include <rtthread.h>
void NGFlowCal(void){
// 定义并初始化 FlowParSTRUCT 结构体变量
FlowParSTRUCT flowParams = {0};
NGParSTRUCT ngParams = {0};
// 设置基本参数
flowParams.dPatm = 0.0981; // 标准大气压(bar)
flowParams.dPf = 1.48; // 压力(MPa)
flowParams.dPfType = 0; // 0=表压1=绝压
flowParams.dDp = 12.50; // 差压(kPa)
flowParams.dTf = 15; // 温度(°C)
flowParams.dCbtj = 0; // 参比条件类型(0=标准状态)
// 设置管道参数
flowParams.dPipeD = 259.38; // 管道内径(mm)
flowParams.dOrificeD = 150.25; // 孔板孔径(mm)
flowParams.dPipeType = 0; // 管道类型
flowParams.dPtmode = 0; // 取压方式(0=法兰取压1=角接取压)
// 设置材料参数
flowParams.dPipeMaterial = 2; // 20号钢
flowParams.dOrificeMaterial = 9; // 镍铬合金
// 设置天然气组分(示例: 95%甲烷5%其他)
// 初始化天然气组分数组(GB/T 21446-2008 典型示例组成)
for (int i = 0; i < NUMBEROFCOMPONENTS; i++) {
flowParams.dNG_Compents[i] = 0.0; // 先全部初始化为0
}
// flowParams.dNG_Compents[0] = 92.47; // 甲烷(CH4)
// flowParams.dNG_Compents[1] = 0.68; // 氮气(N2)
// flowParams.dNG_Compents[2] = 1.75; // 二氧化碳(CO2)
// flowParams.dNG_Compents[3] =3.5; // 乙烷(C2H6)
// flowParams.dNG_Compents[4] = 0.98; // 丙烷(C3H8)
// flowParams.dNG_Compents[5] = 0.00; // 水(H2O)
// flowParams.dNG_Compents[6] = 0.00; // 硫化氢(H2S)
// flowParams.dNG_Compents[7] = 0.0; // 氢气(H2)
// flowParams.dNG_Compents[8] = 0.00; // 一氧化碳(CO)
// flowParams.dNG_Compents[9] = 0.00; // 氧气(O2)
// flowParams.dNG_Compents[10] = 0.34; // 异丁烷(i-C4H10)
// flowParams.dNG_Compents[11] = 0.22; // 正丁烷(n-C4H10)
// flowParams.dNG_Compents[12] = 0.0; // 异戊烷(i-C5H12)
// flowParams.dNG_Compents[13] = 0.06; // 正戊烷(n-C5H12)
// flowParams.dNG_Compents[14] = 0.0; // 己烷(C6H14)
// flowParams.dNG_Compents[15] = 0.0; // 庚烷(C7H16)
// flowParams.dNG_Compents[16] = 0.0; // 辛烷(C8H18)
// flowParams.dNG_Compents[17] = 0.0; // 壬烷(C9H20)
// flowParams.dNG_Compents[18] = 0.0; // 癸烷(C10H22)
// flowParams.dNG_Compents[19] = 0.0; // 氦气(He)
// flowParams.dNG_Compents[20] = 0.0; // 其他组分
flowParams.dNG_Compents[0] = 88.36; // 甲烷(CH4)
flowParams.dNG_Compents[1] = 0.68; // 氮气(N2)
flowParams.dNG_Compents[2] = 1.57; // 二氧化碳(CO2)
flowParams.dNG_Compents[3] =6.25; // 乙烷(C2H6)
flowParams.dNG_Compents[4] = 2.4; // 丙烷(C3H8)
flowParams.dNG_Compents[5] = 0.00; // 水(H2O)
flowParams.dNG_Compents[6] = 0.00; // 硫化氢(H2S)
flowParams.dNG_Compents[7] = 0.04; // 氢气(H2)
flowParams.dNG_Compents[8] = 0.00; // 一氧化碳(CO)
flowParams.dNG_Compents[9] = 0.00; // 氧气(O2)
flowParams.dNG_Compents[10] = 0.15; // 异丁烷(i-C4H10)
flowParams.dNG_Compents[11] = 0.35; // 正丁烷(n-C4H10)
flowParams.dNG_Compents[12] = 0.05; // 异戊烷(i-C5H12)
flowParams.dNG_Compents[13] = 0.1; // 正戊烷(n-C5H12)
flowParams.dNG_Compents[14] = 0.01; // 己烷(C6H14)
flowParams.dNG_Compents[15] = 0.0; // 庚烷(C7H16)
flowParams.dNG_Compents[16] = 0.0; // 辛烷(C8H18)
flowParams.dNG_Compents[17] = 0.0; // 壬烷(C9H20)
flowParams.dNG_Compents[18] = 0.0; // 癸烷(C10H22)
flowParams.dNG_Compents[19] = 0.04; // 氦气(He)
flowParams.dNG_Compents[20] = 0.0; // 其他组分
// 按照GB/T 21446-2008标准中典型天然气组分赋值(体积百分比)
// flowParams.dNG_Compents[0] = 90.6724; // 甲烷(CH4)
// flowParams.dNG_Compents[1] = 3.1284; // 氮气(N2)
// flowParams.dNG_Compents[2] = 0.4676; // 二氧化碳(CO2)
// flowParams.dNG_Compents[3] =4.5279; // 乙烷(C2H6)
// flowParams.dNG_Compents[4] = 0.8280; // 丙烷(C3H8)
// flowParams.dNG_Compents[5] = 0.00; // 水(H2O)
// flowParams.dNG_Compents[6] = 0.00; // 硫化氢(H2S)
// flowParams.dNG_Compents[7] = 0.0; // 氢气(H2)
// flowParams.dNG_Compents[8] = 0.00; // 一氧化碳(CO)
// flowParams.dNG_Compents[9] = 0.00; // 氧气(O2)
// flowParams.dNG_Compents[10] = 0.1037; // 异丁烷(i-C4H10)
// flowParams.dNG_Compents[11] = 0.1563; // 正丁烷(n-C4H10)
// flowParams.dNG_Compents[12] = 0.0321; // 异戊烷(i-C5H12)
// flowParams.dNG_Compents[13] = 0.0443; // 正戊烷(n-C5H12)
// flowParams.dNG_Compents[14] = 0.0393; // 己烷(C6H14)
// flowParams.dNG_Compents[15] = 0.0; // 庚烷(C7H16)
// flowParams.dNG_Compents[16] = 0.0; // 辛烷(C8H18)
// flowParams.dNG_Compents[17] = 0.0; // 壬烷(C9H20)
// flowParams.dNG_Compents[18] = 0.0; // 癸烷(C10H22)
// flowParams.dNG_Compents[19] = 0.0; // 氦气(He)
// flowParams.dNG_Compents[20] = 0.0; // 其他组分
// flowParams.dNG_Compents[0] =96.5; // 甲烷(CH4)
// flowParams.dNG_Compents[1] =0.30; // 氮气(N2)
// flowParams.dNG_Compents[2] =0.6; // 二氧化碳(CO2)
// flowParams.dNG_Compents[3] =1.80; // 乙烷(C2H6)
// flowParams.dNG_Compents[4] =0.45; // 丙烷(C3H8)
// flowParams.dNG_Compents[5] =0; // 水(H2O)
// flowParams.dNG_Compents[6] =0; // 硫化氢(H2S)
// flowParams.dNG_Compents[7] =0; // 氢气(H2)
// flowParams.dNG_Compents[8] =0; // 一氧化碳(CO)
// flowParams.dNG_Compents[9] =0; // 氧气(O2)
// flowParams.dNG_Compents[10]= 0.1; // 异丁烷(i-C4H10)
// flowParams.dNG_Compents[11]= 0.1; // 正丁烷(n-C4H10)
// flowParams.dNG_Compents[12]= 0.05; // 异戊烷(i-C5H12)
// flowParams.dNG_Compents[13]= 0.03; // 正戊烷(n-C5H12)
// flowParams.dNG_Compents[14]= 0.07; // 己烷(C6H14)
// flowParams.dNG_Compents[15]= 0; // 庚烷(C7H16)
// flowParams.dNG_Compents[16]= 0; // 辛烷(C8H18)
// flowParams.dNG_Compents[17]= 0; // 壬烷(C9H20)
// flowParams.dNG_Compents[18]= 0; // 癸烷(C10H22)
// flowParams.dNG_Compents[19]= 0; // 氦气(He)
// flowParams.dNG_Compents[20]= 0; // 其他组分
// // 显式调用 NGCal_Init 初始化模块
// if (NGCal_NGCal != NGCal_Init()) {
// printf("错误NGCal 初始化失败!\n");
// return -1; // 退出程序
// }
// 调用流量计算函数
OFlowCal(&flowParams, &ngParams);
rt_kprintf("FlowBase: %.6f Nm3/s\n", flowParams.dVFlowb);
// 打印计算结果
/* printf("工况条件信息:\n");
printf("标准参比条件: %d\n", flowParams.dCbtj);
printf("计量参比压力: %.2f\n", flowParams.dPb_M);
printf("计量参比温度: %.2f\n", flowParams.dTb_M);
printf("能量参比压力: %.2f\n", flowParams.dPb_E);
printf("能量参比温度: %.2f\n", flowParams.dTb_E);
printf("大气压力: %.2f Pa\n", flowParams.dPatm);
printf("天然气组分:\n");
for (int i = 0; i < 21; i++) {
printf(" 组分 %d: %.6f\n", i, flowParams.dNG_Compents[i]);
}
printf("\n仪表参数:\n");
printf("仪表类型: %d\n", flowParams.dMeterType);
printf("核心类型: %d\n", flowParams.dCoreType);
printf("取压方式: %d\n", flowParams.dPtmode);
printf("管道类型: %d\n", flowParams.dPipeType);
printf("管道内径: %.2f mm\n", flowParams.dPipeD);
printf("管道材质: %d\n", flowParams.dPipeMaterial);
printf("孔板直径: %.2f mm\n", flowParams.dOrificeD);
printf("孔板材质: %d\n", flowParams.dOrificeMaterial);
printf("\n测量值:\n");
printf("压力: %.2f Pa\n", flowParams.dPf);
printf("压力类型: %d\n", flowParams.dPfType);
printf("温度: %.2f K\n", flowParams.dTf);
printf("差压: %.2f Pa\n", flowParams.dDp);
printf("仪表系数: %.6f\n", flowParams.dMeterFactor);
printf("脉冲数: %.2f\n", flowParams.dPulseNum);
printf("\n计算结果:\n");
printf("膨胀系数: %.6f\n", flowParams.dE);
printf("相对密度系数: %.6f\n", flowParams.dFG);
printf("超压缩系数: %.6f\n", flowParams.dFT);
printf("动力粘度: %.6f\n", flowParams.dDViscosity);
printf("热膨胀系数: %.6f\n", flowParams.dDExpCoefficient);
printf("管道雷诺数: %.2f\n", flowParams.dRnPipe);
printf("孔板弯曲系数: %.6f\n", flowParams.dBk);
printf("管道粗糙度: %.6f\n", flowParams.dRoughNessPipe);
printf("流出系数: %.6f\n", flowParams.dCd);
printf("流出系数修正: %.6f\n", flowParams.dCdCorrect);
printf("喷嘴流出系数: %.6f\n", flowParams.dCdNozell);
printf("标况体积流量: %.6f Nm3/s\n", flowParams.dVFlowb);
printf("工况体积流量: %.6f m3/s\n", flowParams.dVFlowf);
printf("质量流量: %.6f t/s\n", flowParams.dMFlowb);
printf("能量流量: %.6f MJ/s\n", flowParams.dEFlowb);
printf("流速: %.6f m/s\n", flowParams.dVelocityFlow);
printf("压力损失: %.6f\n", flowParams.dPressLost);
printf("直径比: %.6f\n", flowParams.dBeta);
printf("等熵指数: %.6f\n", flowParams.dKappa);
printf("压缩因子: %.6f\n", flowParams.dFpv);
printf("状态: %ld\n", ngParams.lStatus);
printf("强制更新标志: %d\n", ngParams.bForceUpdate);
printf("混合比:\n");
for (int i = 0; i < 21; i++) {
printf(" 组分 %d: %.6f\n", i, ngParams.adMixture[i]);
}
printf("参比条件: %d\n", ngParams.dCbtj);
printf("标准压力: %.2f Pa\n", ngParams.dPb);
printf("标准温度: %.2f K\n", ngParams.dTb);
printf("工作压力: %.2f Pa\n", ngParams.dPf);
printf("工作温度: %.2f K\n", ngParams.dTf);
printf("\nAGA 8 详细计算结果:\n");
printf("平均分子量: %.6f\n", ngParams.dMrx);
printf("标准条件下压缩因子: %.6f\n", ngParams.dZb);
printf("工作条件下压缩因子: %.6f\n", ngParams.dZf);
printf("超压缩因子: %.6f\n", ngParams.dFpv);
printf("标准条件下摩尔密度: %.6f moles/dm3\n", ngParams.dDb);
printf("工作条件下摩尔密度: %.6f moles/dm3\n", ngParams.dDf);
printf("标准条件下密度: %.6f kg/m3\n", ngParams.dRhob);
printf("工作条件下密度: %.6f kg/m3\n", ngParams.dRhof);
printf("理想相对密度: %.6f\n", ngParams.dRD_Ideal);
printf("实际相对密度: %.6f\n", ngParams.dRD_Real);
printf("\n热力学性质:\n");
printf("理想焓: %.6f\n", ngParams.dHo);
printf("实际焓: %.6f J/kg\n", ngParams.dH);
printf("实际熵: %.6f J/kg-mol.K\n", ngParams.dS);
printf("理想定压比热: %.6f J/kg-mol.K\n", ngParams.dCpi);
printf("实际定压比热: %.6f J/kg-mol.K\n", ngParams.dCp);
printf("实际定容比热: %.6f J/kg-mol.K\n", ngParams.dCv);
printf("比热比: %.6f\n", ngParams.dk);
printf("等熵指数: %.6f\n", ngParams.dKappa);
printf("声速: %.6f m/s\n", ngParams.dSOS);
printf("临界流函数: %.6f\n", ngParams.dCstar);*/
//printf("\n单位摩尔高热值: %.6f\n", ngParams.dHhvMol);
// printf("单位摩尔低热值: %.6f\n", ngParams.dLhvMol);
}
double format_double(double value, int digits) {
// 处理默认位数4位
if (digits == 0) {
digits = 4;
}
// 验证位数有效性
if (digits < 1 || digits > 5) {
fprintf(stderr, "Error: Invalid digit value (must be 1-5 or 0 for default)\n");
return NAN; // 返回 NaN 表示错误
}
char format_str[10];
char buffer[50];
// 生成动态格式字符串(如 "%.4f"
snprintf(format_str, sizeof(format_str), "%%.%df", digits);
// 格式化数值到字符串
snprintf(buffer, sizeof(buffer), format_str, value);
// 转换回 double
double result = strtod(buffer, NULL);
return result;
}
void OFlowCal(FlowParSTRUCT *ptFlowPar, NGParSTRUCT *ptNGPar) {
double tempPatm = ptFlowPar->dPatm * 1000000;
double tempPf = ptFlowPar->dPf * 1000000;
double tempDP = ptFlowPar->dDp * 1000;
double tempTf = ptFlowPar->dTf + 273.15;
if (ptFlowPar->dPfType == 0) {
ptFlowPar->dPf = tempPatm + tempPf;
ptNGPar->dPf = tempPatm + tempPf;
} else {
ptFlowPar->dPf = tempPf;
ptNGPar->dPf = tempPf;
}
ptFlowPar->dDp = tempDP;
ptFlowPar->dTf = tempTf;
ptNGPar->dTf = tempTf;
ptNGPar->dCbtj = ptFlowPar->dCbtj;
switch (ptNGPar->dCbtj) {
case 2:
ptNGPar->dPb = 101325;
ptNGPar->dTb = 273.15;
ptFlowPar->dPb_M = (101325);
ptFlowPar->dTb_M = (273.15);
break;
case 1:
ptNGPar->dPb = (101325);
ptNGPar->dTb = (288.15);
ptFlowPar->dPb_M = (101325);
ptFlowPar->dTb_M = (288.15);
break;
case 0:
ptNGPar->dPb = (101325);
ptNGPar->dTb = (293.15);
ptFlowPar->dPb_M = (101325);
ptFlowPar->dTb_M = (293.15);
break;
default: ;
}
double ngArray[NUMBEROFCOMPONENTS];
for (int i = 0; i < NUMBEROFCOMPONENTS; i++) {
ngArray[i] = ptFlowPar->dNG_Compents[i] / 100;
ptNGPar->adMixture[i] = ngArray[i];
}
Crit(ptNGPar, 0);
ptFlowPar->dFpv = format_double(ptNGPar->dFpv, 4);
ptFlowPar->dOrificeD = format_double(ptFlowPar->dOrificeD * (
1 + 0.000001 * CaiLiaoPzxs(ptFlowPar->dOrificeMaterial) * (
ptFlowPar->dTf - 293.15)), 2);
ptFlowPar->dPipeD = format_double(ptFlowPar->dPipeD * (1 + 0.000001 * CaiLiaoPzxs(ptFlowPar->dPipeMaterial) * (
ptFlowPar->dTf - 293.15)), 2);
ptFlowPar->dBeta = format_double(ptFlowPar->dOrificeD / ptFlowPar->dPipeD, 4);
ptFlowPar->dE = format_double(calculateE(ptFlowPar->dBeta), 4);
ptFlowPar->dFG = format_double(calculateFG(ptNGPar->dRD_Real), 4);
ptFlowPar->dFT = format_double(calculateFT(ptFlowPar->dTb_M, ptFlowPar->dTf), 4);
ptFlowPar->dKappa = format_double(calculateKappa(ptNGPar->dZf), 4);
ptFlowPar->dDViscosity = format_double(Dlndjs(ptFlowPar->dPf / 1e6, ptFlowPar->dTf), 5);
ptFlowPar->dDExpCoefficient = format_double(calculateEpsilon(ptFlowPar->dPf, ptFlowPar->dDp,
ptFlowPar->dBeta, ptFlowPar->dKappa), 4);
double D = ptFlowPar->dPipeD / 1000.0;
double d = ptFlowPar->dOrificeD / 1000.0;
double beta = ptFlowPar->dBeta;
double P1 = ptFlowPar->dPf;
double deltaP = ptFlowPar->dDp;
double Tf = ptFlowPar->dTf;
double C_initial = 0.6;
double Qf_initial = (C_initial * ptFlowPar->dE * ptFlowPar->dDExpCoefficient * M_PI * pow(d, 2) / 4)
* sqrt(2 * deltaP / (ptNGPar->dRhof * (1 - pow(beta, 4))));
ptFlowPar->dVFlowf = Qf_initial;
double tolerance = 1e-6;
double currentC = C_initial;
double currentReD = calculateReD(Qf_initial, D, ptNGPar->dRhof, ptFlowPar->dDViscosity);
int iter = 0;
double prevC = 0;
do {
int maxIter = 100;
prevC = currentC;
currentC = calculateCd(beta, currentReD, ptFlowPar->dPipeD, ptFlowPar->dPtmode);
double Qf = (currentC * ptFlowPar->dDExpCoefficient * M_PI * pow(d, 2) / 4)
* sqrt(2 * deltaP / (ptNGPar->dRhof * (1 - pow(beta, 4))));
ptFlowPar->dVFlowf = Qf;
currentReD = calculateReD(Qf, D, ptNGPar->dRhof, ptFlowPar->dDViscosity);
iter++;
if (iter > maxIter) {
fprintf(stderr, "\n");
}
} while (fabs(currentC - prevC) / currentC > tolerance);
double K = calculateK(ptFlowPar->dPipeType);
double G_me = calculateRoughnessFactor(ptFlowPar->dPipeD, K, currentC);
double C_corrected = currentC * G_me;
ptFlowPar->dCd = C_corrected;
ptFlowPar->dRoughNessPipe = G_me;
ptFlowPar->dRnPipe = currentReD;
double Qn = ptFlowPar->dVFlowf * (ptFlowPar->dFpv * ptFlowPar->dFpv * P1 / ptFlowPar->dPb_M)
* (ptFlowPar->dTb_M) / Tf;
ptFlowPar->dVFlowb = Qn;
ptFlowPar->dMFlowb = ptFlowPar->dVFlowb * ptNGPar->dRhob;
ptFlowPar->dEFlowb = ptFlowPar->dVFlowb * ptNGPar->dHhvMol * ptFlowPar->dPb_M * 1e-6 / RGASKJ / ptFlowPar->dTb_M;
ptFlowPar->dVelocityFlow = ptFlowPar->dVFlowf / (M_PI * pow((ptFlowPar->dPipeD / 2000), 2));
}
double CaiLiaoPzxs(const int tempCaiLiao) {
double CaiLiaoPzxs = 0;
switch (tempCaiLiao) {
case 0:
CaiLiaoPzxs = 11.75;
break;
case 1:
CaiLiaoPzxs = 11.6;
break;
case 2:
CaiLiaoPzxs = 11.16;
break;
case 3:
CaiLiaoPzxs = 11.59;
break;
case 4:
CaiLiaoPzxs = 10.5;
break;
case 5:
CaiLiaoPzxs = 10.0;
break;
case 6:
CaiLiaoPzxs = 10.2;
break;
case 7:
CaiLiaoPzxs = 15.5;
break;
case 8:
CaiLiaoPzxs = 11.5;
break;
case 9:
CaiLiaoPzxs = 10.8;
break;
case 10:
CaiLiaoPzxs = 16.6;
break;
case 11:
CaiLiaoPzxs = 11.4;
break;
case 12:
CaiLiaoPzxs = 16.55;
break;
case 13:
CaiLiaoPzxs = 17.8;
break;
case 14:
CaiLiaoPzxs = 17.2;
break;
default: ;
}
return CaiLiaoPzxs;
}
double calculateK(int dPipeType) {
double Jdccd;
switch (dPipeType) {
case 0:
Jdccd = 0.029;
break;
case 1:
case 2:
case 3:
Jdccd = 0.075;
break;
case 4:
Jdccd = 0.1;
break;
case 5:
Jdccd = 0.15;
break;
case 6:
Jdccd = 1;
break;
case 7:
Jdccd = 2.1;
break;
case 8:
Jdccd = 0.04;
break;
case 9:
Jdccd = 0.15;
break;
case 10:
Jdccd = 0.13;
break;
case 11:
Jdccd = 0.25;
break;
default:
fprintf(stderr, "δ֪<EFBFBD>Ĺܵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>: %d\n", dPipeType);
return FLOW_CALC_ERROR;
}
return Jdccd;
}
double calculateRoughnessFactor(double D_pipe, double K, double C) {
double K_over_D = K / D_pipe;
if (K_over_D <= 0.0004) {
return 1.0000;
}
double term = (K_over_D * 1e6) - 400;
if (term < 0) {
fprintf(
stderr,
"K/D <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><CABD><EFBFBD>÷<EFBFBD>Χ\n");
return FLOW_CALC_ERROR;
}
double G_me = 1 + (0.011 / C) * sqrt(term);
return G_me;
}
double calculateE(double beta) {
return 1 / sqrt(1 - pow(beta, 4));
}
double calculateFG(double dRD_Real) {
return 1 / sqrt(dRD_Real);
}
double calculateFT(double dTb_M, double dTf) {
return sqrt(dTb_M / dTf);
}
double calculateEpsilon(double dPf, double dDp, double beta, double dKappa) {
double tau = (dPf - dDp) / dPf;
double epsilon = 1 - (0.351 + 0.256 * pow(beta, 4) + 0.93 * pow(beta, 8)) * (1 - pow(tau, 1 / dKappa));
return epsilon;
}
double calculateKappa(double dZf) {
double gamma = 1.3;
double Z = dZf;
double kappa = gamma / (1 - (gamma - 1) * (1 / Z - 1));
return kappa;
}
double calculateReD(double Qf, double D, double rho, double mu) {
return (4 * Qf * rho * 1000) / (M_PI * D * mu);
}
double calculateCd(double beta, double ReD, double D_mm, int ptMode) {
double L1, L2;
switch (ptMode) {
case 1:
L1 = L2 = 0;
break;
case 0:
L1 = L2 = 25.4 / D_mm;
break;
case 2:
L1 = 1.0;
L2 = 0.47;
break;
default:
fprintf(stderr, "<EFBFBD><EFBFBD>֧<EFBFBD>ֵ<EFBFBD>ȡѹ<EFBFBD><EFBFBD>ʽ: %d\n", ptMode);
return FLOW_CALC_ERROR;
}
double term1 = 0.5961 + 0.0261 * pow(beta, 2) - 0.216 * pow(beta, 8);
double term2 = 0.000521 * pow(1e6 * beta / ReD, 0.7);
double A = pow(19000 * beta / ReD, 0.8);
double term3 = (0.0188 + 0.0063 * A) * pow(beta, 3.5) * pow(1e6 / ReD, 0.3);
double term4 = (0.043 + 0.08 * exp(-10 * L1) - 0.123 * exp(-7 * L1))
* (1 - 0.11 * A) * pow(beta, 4) / (1 - pow(beta, 4));
double term5 = -0.031 * (2 * L2 / (1 - beta) - 0.8 * pow(2 * L2 / (1 - beta), 1.1))
* pow(beta, 1.3);
double Cd = term1 + term2 + term3 + term4 + term5;
if (D_mm < 71.12) {
Cd += 0.011 * (0.75 - beta) * (2.8 - D_mm / 25.4);
}
return Cd;
}
double Dlndjs(double tempP_jy, double tempT) {
double Dlndjs_Dlnd_Data[8][11] = {
{976, 991, 1014, 1044, 1073, 1114, 1156, 1207, 1261, 1331, 1405},
{1027, 1040, 1063, 1091, 1118, 1151, 1185, 1230, 1276, 1331, 1389},
{1071, 1082, 1106, 1127, 1149, 1180, 1211, 1250, 1289, 1335, 1383},
{1123, 1135, 1153, 1174, 1195, 1224, 1253, 1289, 1324, 1366, 1409},
{1167, 1178, 1196, 1216, 1236, 1261, 1287, 1318, 1350, 1385, 1421},
{1213, 1224, 1239, 1257, 1275, 1297, 1320, 1346, 1373, 1403, 1435},
{1260, 1270, 1281, 1297, 1313, 1333, 1352, 1374, 1396, 1424, 1451},
{1303, 1312, 1323, 1338, 1352, 1372, 1391, 1412, 1432, 1456, 1482}
};
double Dlndjs_Dlnd_T[8] = {
-15 + 273.15, 0 + 273.15, 15 + 273.15, 30 + 273.15,
45 + 273.15, 60 + 273.15, 75 + 273.15, 90 + 273.15
};
double Dlndjs_Dlnd_P[11] = {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
double ky, kx;
int i, m = 0, n = 0;
if (tempT < Dlndjs_Dlnd_T[0]) {
tempT = Dlndjs_Dlnd_T[0];
}
if (tempT > Dlndjs_Dlnd_T[7]) {
tempT = Dlndjs_Dlnd_T[7];
}
if (tempP_jy < Dlndjs_Dlnd_P[0]) {
tempP_jy = Dlndjs_Dlnd_P[0];
}
if (tempP_jy > Dlndjs_Dlnd_P[10]) {
tempP_jy = Dlndjs_Dlnd_P[10];
}
for (i = 0; i <= 6; i++) {
if (tempT >= Dlndjs_Dlnd_T[i] && tempT <= Dlndjs_Dlnd_T[i + 1]) {
m = i;
break;
}
}
for (i = 0; i <= 9; i++) {
if (tempP_jy >= Dlndjs_Dlnd_P[i] && tempP_jy <= Dlndjs_Dlnd_P[i + 1]) {
n = i;
break;
}
}
if (Dlndjs_Dlnd_P[n + 1] - Dlndjs_Dlnd_P[n] != 0) {
ky = (tempP_jy - Dlndjs_Dlnd_P[n]) / (Dlndjs_Dlnd_P[n + 1] - Dlndjs_Dlnd_P[n]);
} else {
ky = 0;
}
if (Dlndjs_Dlnd_T[m + 1] - Dlndjs_Dlnd_T[m] != 0) {
kx = (tempT - Dlndjs_Dlnd_T[m]) / (Dlndjs_Dlnd_T[m + 1] - Dlndjs_Dlnd_T[m]);
} else {
kx = 0;
}
double s1 = Dlndjs_Dlnd_Data[m][n] + (Dlndjs_Dlnd_Data[m][n + 1] - Dlndjs_Dlnd_Data[m][n]) * ky;
double s2 = Dlndjs_Dlnd_Data[m + 1][n] + (Dlndjs_Dlnd_Data[m + 1][n + 1] - Dlndjs_Dlnd_Data[m + 1][n]) * ky;
return (s1 + (s2 - s1) * kx) / 100000.0;
}
// 压力损失计算
double YaLiSunShi(double tempLiuChuXiShu, double tempZjb, double tempDp, int JieLiuZhuangZhi) {
double ylss = 0;
switch (JieLiuZhuangZhi) {
case 0:
case 1:
case 2:
ylss = tempDp * (sqrt(1 - tempZjb) - tempLiuChuXiShu * pow(tempZjb, 2))
/ (sqrt(1 - tempZjb) + tempLiuChuXiShu * pow(tempZjb, 2));
break;
default: ;
}
return ylss;
}
// 标况转工况流量转换
double FlowConvert_BaseToWork(double Pf, double Tf, double Zb, double Zf, double FlowBase, int Cbtj) {
double tempPn = 0;
double tempTn = 0;
switch (Cbtj) {
case 2:
tempPn = 101325;
tempTn = 273.15;
break;
case 1:
tempPn = 101325;
tempTn = 288.15;
break;
case 0:
tempPn = 101325;
tempTn = 293.15;
break;
case 3:
tempPn = 10155981;
tempTn = 288.7055555;
break;
default: ;
}
return FlowBase * tempPn * Tf * Zf / Pf / tempTn / Zb;
}
// 工况转标况流量转换
double FlowConvert_WorkToBase(double Pf, double Tf, double Zb, double Zf, double FlowWork, int Cbtj) {
double tempPn = 0;
double tempTn = 0;
switch (Cbtj) {
case 2:
tempPn = 101325;
tempTn = 273.15;
break;
case 1:
tempPn = 101325;
tempTn = 288.15;
break;
case 0:
tempPn = 101325;
tempTn = 293.15;
break;
case 3:
tempPn = 10155981;
tempTn = 288.7055555;
break;
default: ;
}
return FlowWork * Pf * tempTn * Zb / tempPn / Tf / Zf;
}

View File

@ -0,0 +1,89 @@
#ifndef FLOWCAL_H
#define FLOWCAL_H
#include "NGCal.h"
typedef struct FlowParSTRUCT {
int dCbtj;
double dPb_M;
double dTb_M;
double dPb_E;
double dTb_E;
double dPatm;
double dNG_Compents[21];
int dMeterType;
int dCoreType;
int dPtmode;
int dPipeType;
double dPipeD;
int dPipeMaterial;
double dOrificeD;
int dOrificeMaterial;
double dPf;
int dPfType;
double dTf;
double dDp;
double dMeterFactor;
double dPulseNum;
double dE;
double dFG;
double dFT;
double dDViscosity;
double dDExpCoefficient;
double dRnPipe;
double dBk;
double dRoughNessPipe;
double dCd;
double dCdCorrect;
double dCdNozell;
double dVFlowb;
double dVFlowf;
double dMFlowb;
double dEFlowb;
double dVelocityFlow;
double dPressLost;
double dBeta;
double dKappa;
double dFpv;
} FlowParSTRUCT;
double CaiLiaoPzxs(int tempCaiLiao);
double calculateK(int dPipeType);
double calculateRoughnessFactor(double D_pipe, double K, double C);
void thermalExpansionCorrection(double dOrificeMaterial, double dOrificeD,
double dPipeMaterial, double dPipeD,
double dTf, double correctedValues[3]);
double calculateE(double beta);
double calculateFG(double dRD_Real);
double calculateFT(double dTb_M, double dTf);
double calculateEpsilon(double dPf, double dDp, double beta, double dKappa);
double calculateKappa(double dZf);
double calculateReD(double Qf, double D, double rho, double mu);
double calculateCd(double beta, double ReD, double D_mm, int ptMode);
double Dlndjs(double tempP_jy, double tempT);
void OFlowCal(FlowParSTRUCT *ptFlowPar, NGParSTRUCT *ptNGPar);
void NGFlowCal(void);
#endif

View File

@ -0,0 +1,86 @@
#include "NGCal.h"
#include "Therm.h"
#include "Detail.h"
#include "math.h"
static Therm *ptTherm;
static Detail *ptDetail;
int NGCal_Init(NGParSTRUCT *ptNGPar) {
ptDetail = Detail_Construct();
if (NULL == ptDetail) {
return MEMORY_ALLOCATION_ERROR;
}
ptTherm = (Therm *) malloc(sizeof(Therm));
Therm_Init(ptTherm);
if (NULL == ptTherm) {
return MEMORY_ALLOCATION_ERROR;
}
return NGCal_NGCal;
}
int NGCal_UnInit(void) {
if (ptDetail) free(ptDetail);
if (ptTherm) free(ptTherm);
return 0;
}
double SOS(NGParSTRUCT *ptNGPar) {
if (NULL == ptDetail || NULL == ptTherm) {
NGCal_UnInit();
NGCal_Init(ptNGPar);
}
Therm_Run(ptTherm, ptNGPar, ptDetail);
ptNGPar->dCstar = 0.0;
return ptNGPar->dSOS;
}
double Crit(NGParSTRUCT *ptNGPar, double dPlenumVelocity) {
if (NULL == ptDetail || NULL == ptTherm) {
NGCal_UnInit();
if (NGCal_NGCal != NGCal_Init(ptNGPar)) {
ptNGPar->lStatus = MEMORY_ALLOCATION_ERROR;
return 0.0;
}
}
Therm_Run(ptTherm, ptNGPar, ptDetail);
double DH = (ptNGPar->dSOS * ptNGPar->dSOS - dPlenumVelocity * dPlenumVelocity) / 2.0;
double S = ptNGPar->dS;
double H = ptNGPar->dH;
double R = ptNGPar->dRhof;
double P = ptNGPar->dPf;
double Z = ptNGPar->dZf;
double T = ptNGPar->dTf;
// DDH = 10.0;
for (int i = 1; i < MAX_NUM_OF_ITERATIONS; i++) {
double tolerance = 1.0;
Therm_HS_Mode(ptTherm, ptNGPar, ptDetail, H - DH, S, 1);
Therm_Run(ptTherm, ptNGPar, ptDetail);
double DDH = DH;
DH = (ptNGPar->dSOS * ptNGPar->dSOS - dPlenumVelocity * dPlenumVelocity) / 2.0;
if (fabs(DDH - DH) < tolerance) break;
}
ptNGPar->dCstar = (ptNGPar->dRhof * ptNGPar->dSOS) / sqrt(R * P * Z);
ptNGPar->dPf = P;
ptNGPar->dTf = T;
Therm_Run(ptTherm, ptNGPar, ptDetail);
Detail_dhvMol(ptDetail,ptNGPar);
return ptNGPar->dCstar;
}
double Cperf(const NGParSTRUCT *ptNGPar) {
double k = ptNGPar->dKappa;
double root = 2.0 / (k + 1.0);
double exponent = (k + 1.0) / (k - 1.0);
return (sqrt(k * pow(root, exponent)));
}
double CRi(const NGParSTRUCT *ptNGPar) {
return (Cperf(ptNGPar) / sqrt(ptNGPar->dZf));
}

View File

@ -0,0 +1,80 @@
/*************************************************************************
* <EFBFBD>ļ<EFBFBD>: NGCal.h
**************************************************************************/
#ifndef _NGCal_H
#define _NGCal_H
#include <stdio.h>
#include <stdlib.h>
#define NORMAL 9000
#define NGCal_NGCal 9001
#define MEMORY_ALLOCATION_ERROR 9002
#define GENERAL_CALCULATION_FAILURE 9003
#define MAX_NUM_OF_ITERATIONS_EXCEEDED 9004
#define NEGATIVE_DENSITY_DERIVATIVE 9005
#define MAX_DENSITY_IN_BRAKET_EXCEEDED 9006
#define FLOW_CALC_ERROR 9007
#define FLOW_CALC_DIEDAI_ERROR 9008
#define NUMBEROFCOMPONENTS 21
#define M_PI 3.1415926535897932
#define MAX_NUM_OF_ITERATIONS 100
#define P_CHG_TOL 0.001
#define T_CHG_TOL 0.001
#define P_MAX 1.379e8
#define P_MIN 0.0
#define T_MAX 473.15
#define T_MIN 143.0
#define RGASKJ 8.314510e-3
#define RGAS 8.314510
typedef struct tagNGParSTRUCT
{
long lStatus;
int bForceUpdate;
double adMixture[21];
int dCbtj;
double dPb;
double dTb;
double dPf;
double dTf;
double dMrx;
double dZb;
double dZf;
double dFpv;
double dDb;
double dDf;
double dRhob;
double dRhof;
double dRD_Ideal;
double dRD_Real;
double dHo;
double dH;
double dS;
double dCpi;
double dCp;
double dCv;
double dk;
double dKappa;
double dSOS;
double dCstar;
double dHhvMol;
double dLhvMol;
} NGParSTRUCT;
enum gascomp {
XiC1=0, XiN2, XiCO2, XiC2, XiC3,
XiH2O, XiH2S, XiH2, XiCO, XiO2,
XiIC4, XiNC4, XiIC5, XiNC5, XiNC6,
XiNC7, XiNC8, XiNC9, XiNC10, XiHe, XiAr
};
int NGCal_Init(NGParSTRUCT * ptNGPar);
int NGCal_UnInit(void);
double SOS(NGParSTRUCT *);
double Crit(NGParSTRUCT *, double);
#endif

View File

@ -0,0 +1,410 @@
#include "therm.h"
#include <math.h>
#include "Detail.h"
void Therm_Init(Therm *therm) {
therm->CAL_TH = 4.1840;
therm->coefA = 0;
therm->coefB = 1;
therm->coefC = 2;
therm->coefD = 3;
therm->coefE = 4;
therm->coefF = 5;
therm->coefG = 6;
therm->coefH = 7;
therm->coefI = 8;
therm->coefJ = 9;
therm->coefK = 10;
therm->dPdD = 0.0;
therm->dPdT = 0.0;
therm->dSi = 0.0;
therm->dTold = 0.0;
therm->dMrxold = 0.0;
therm->GK_points = 5;
therm->GK_root[0] = 0.14887433898163121088;
therm->GK_root[1] = 0.43339539412924719080;
therm->GK_root[2] = 0.67940956829902440263;
therm->GK_root[3] = 0.86506336668898451073;
therm->GK_root[4] = 0.97390652851717172008;
therm->GK_weight[0] = 0.29552422471475286217;
therm->GK_weight[1] = 0.26926671930999634918;
therm->GK_weight[2] = 0.21908636251598204295;
therm->GK_weight[3] = 0.14945134915058059038;
therm->GK_weight[4] = 0.066671344308688137179;
double thermConstants[21][11] = {
{-29776.4, 7.95454, 43.9417, 1037.09, 1.56373, 813.205, -24.9027, 1019.98, -10.1601, 1070.14, -20.0615},
{-3495.34, 6.95587, 0.272892, 662.738, -0.291318, -680.562, 1.78980, 1740.06, 0.0, 100.0, 4.49823},
{20.7307, 6.96237, 2.68645, 500.371, -2.56429, -530.443, 3.91921, 500.198, 2.13290, 2197.22, 5.81381},
{-37524.4, 7.98139, 24.3668, 752.320, 3.53990, 272.846, 8.44724, 1020.13, -13.2732, 869.510, -22.4010},
{-56072.1, 8.14319, 37.0629, 735.402, 9.38159, 247.190, 13.4556, 1454.78, -11.7342, 984.518, -24.0426},
{-13773.1, 7.97183, 6.27078, 2572.63, 2.05010, 1156.72, 0.0, 100.0, 0.0, 100.0, -3.24989},
{-10085.4, 7.94680, -0.08380, 433.801, 2.85539, 843.792, 6.31595, 1481.43, -2.88457, 1102.23, -0.51551},
{-5565.60, 6.66789, 2.33458, 2584.98, 0.749019, 559.656, 0.0, 100.0, 0.0, 100.0, -7.94821},
{-2753.49, 6.95854, 2.02441, 1541.22, 0.096774, 3674.81, 0.0, 100.0, 0.0, 100.0, 6.23387},
{-3497.45, 6.96302, 2.40013, 2522.05, 2.21752, 1154.15, 0.0, 100.0, 0.0, 100.0, 9.19749},
{-72387.0, 17.8143, 58.2062, 1787.39, 40.7621, 808.645, 0.0, 100.0, 0.0, 100.0, -44.1341},
{-72674.8, 18.6383, 57.4178, 1792.73, 38.6599, 814.151, 0.0, 100.0, 0.0, 100.0, -46.1938},
{-91505.5, 21.3861, 74.3410, 1701.58, 47.0587, 775.899, 0.0, 100.0, 0.0, 100.0, -60.2474},
{-83845.2, 22.5012, 69.5789, 1719.58, 46.2164, 802.174, 0.0, 100.0, 0.0, 100.0, -62.2197},
{-94982.5, 26.6225, 80.3819, 1718.49, 55.6598, 802.069, 0.0, 100.0, 0.0, 100.0, -77.5366},
{-103353.0, 30.4029, 90.6941, 1669.32, 63.2028, 786.001, 0.0, 100.0, 0.0, 100.0, -92.0164},
{-109674.0, 34.0847, 100.253, 1611.55, 69.7675, 768.847, 0.0, 100.0, 0.0, 100.0, -106.149},
{-122599.0, 38.5014, 111.446, 1646.48, 80.5015, 781.588, 0.0, 100.0, 0.0, 100.0, -122.444},
{-133564.0, 42.7143, 122.173, 1654.85, 90.2255, 785.564, 0.0, 100.0, 0.0, 100.0, -138.006},
{0.0, 4.9680, 0.0, 100.0, 0.0, 100.0, 0.0, 100.0, 0.0, 100.0, 0.0},
{0.0, 4.9680, 0.0, 100.0, 0.0, 100.0, 0.0, 100.0, 0.0, 100.0, 0.0}
};
for (int i = 0; i < 21; i++) {
for (int j = 0; j < 11; j++) {
therm->ThermConstants[i][j] = thermConstants[i][j];
}
}
}
void Therm_Run(Therm *therm, NGParSTRUCT *ptNGPar, Detail *detail) {
double c, x, y, z;
Detail_Run(detail, ptNGPar);
Detail_dZdD(detail, ptNGPar->dDf);
Therm_CprCvrHS(therm, ptNGPar, detail);
ptNGPar->dk = ptNGPar->dCp / ptNGPar->dCv;
x = ptNGPar->dk * RGAS * 1000.0 * ptNGPar->dTf;
y = ptNGPar->dMrx;
z = ptNGPar->dZf + ptNGPar->dDf * detail->ddZdD;
c = (x / y) * z;
ptNGPar->dSOS = sqrt(c);
ptNGPar->dKappa = (c * ptNGPar->dRhof) / ptNGPar->dPf;
}
double Therm_CpiMolar(Therm *therm, NGParSTRUCT *ptNGPar) {
double cp = 0.0;
double Cpx;
double DT, FT, HT, JT;
double Dx, Fx, Hx, Jx;
double T;
T = ptNGPar->dTf;
for (int i = 0; i < NUMBEROFCOMPONENTS; i++) {
if (ptNGPar->adMixture[i] > 0) {
Cpx = 0.0;
DT = therm->ThermConstants[i][therm->coefD] / T;
FT = therm->ThermConstants[i][therm->coefF] / T;
HT = therm->ThermConstants[i][therm->coefH] / T;
JT = therm->ThermConstants[i][therm->coefJ] / T;
Dx = DT / sinh(DT);
Fx = FT / cosh(FT);
Hx = HT / sinh(HT);
Jx = JT / cosh(JT);
Cpx += therm->ThermConstants[i][therm->coefB];
Cpx += therm->ThermConstants[i][therm->coefC] * Dx * Dx;
Cpx += therm->ThermConstants[i][therm->coefE] * Fx * Fx;
Cpx += therm->ThermConstants[i][therm->coefG] * Hx * Hx;
Cpx += therm->ThermConstants[i][therm->coefI] * Jx * Jx;
Cpx *= ptNGPar->adMixture[i];
cp += Cpx;
}
}
cp *= therm->CAL_TH;
return cp;
}
double Therm_coth(double x) {
return 1.0 / tanh(x);
}
double Therm_Ho(Therm *therm, NGParSTRUCT *ptNGPar) {
double H = 0.0;
double Hx;
double DT, FT, HT, JT;
double cothDT, tanhFT, cothHT, tanhJT;
double T = ptNGPar->dTf;
for (int i = 0; i < NUMBEROFCOMPONENTS; i++) {
if (ptNGPar->adMixture[i] <= 0.0) continue;
Hx = 0.0;
DT = therm->ThermConstants[i][therm->coefD] / T;
FT = therm->ThermConstants[i][therm->coefF] / T;
HT = therm->ThermConstants[i][therm->coefH] / T;
JT = therm->ThermConstants[i][therm->coefJ] / T;
cothDT = Therm_coth(DT);
tanhFT = tanh(FT);
cothHT = Therm_coth(HT);
tanhJT = tanh(JT);
Hx += therm->ThermConstants[i][therm->coefA];
Hx += therm->ThermConstants[i][therm->coefB] * T;
Hx += therm->ThermConstants[i][therm->coefC] * therm->ThermConstants[i][therm->coefD] * cothDT;
Hx -= therm->ThermConstants[i][therm->coefE] * therm->ThermConstants[i][therm->coefF] * tanhFT;
Hx += therm->ThermConstants[i][therm->coefG] * therm->ThermConstants[i][therm->coefH] * cothHT;
Hx -= therm->ThermConstants[i][therm->coefI] * therm->ThermConstants[i][therm->coefJ] * tanhJT;
Hx *= ptNGPar->adMixture[i];
H += Hx;
}
H *= therm->CAL_TH;
H /= ptNGPar->dMrx;
return H * 1000.0;
}
double Therm_So(Therm *therm, NGParSTRUCT *ptNGPar) {
double S = 0.0;
double Sx;
double DT, FT, HT, JT;
double cothDT, tanhFT, cothHT, tanhJT;
double sinhDT, coshFT, sinhHT, coshJT;
double T = ptNGPar->dTf;
for (int i = 0; i < NUMBEROFCOMPONENTS; i++) {
if (ptNGPar->adMixture[i] <= 0.0) continue;
Sx = 0.0;
DT = therm->ThermConstants[i][therm->coefD] / T;
FT = therm->ThermConstants[i][therm->coefF] / T;
HT = therm->ThermConstants[i][therm->coefH] / T;
JT = therm->ThermConstants[i][therm->coefJ] / T;
cothDT = Therm_coth(DT);
tanhFT = tanh(FT);
cothHT = Therm_coth(HT);
tanhJT = tanh(JT);
sinhDT = sinh(DT);
coshFT = cosh(FT);
sinhHT = sinh(HT);
coshJT = cosh(JT);
Sx += therm->ThermConstants[i][therm->coefK];
Sx += therm->ThermConstants[i][therm->coefB] * log(T);
Sx += therm->ThermConstants[i][therm->coefC] * (DT * cothDT - log(sinhDT));
Sx -= therm->ThermConstants[i][therm->coefE] * (FT * tanhFT - log(coshFT));
Sx += therm->ThermConstants[i][therm->coefG] * (HT * cothHT - log(sinhHT));
Sx -= therm->ThermConstants[i][therm->coefI] * (JT * tanhJT - log(coshJT));
Sx *= ptNGPar->adMixture[i];
S += Sx;
}
S *= therm->CAL_TH;
S /= ptNGPar->dMrx;
return S * 1000.0;
}
void Therm_CprCvrHS(Therm *therm, NGParSTRUCT *ptNGPar, Detail *detail) {
double Cvinc = 0.0;
double Cvr, Cpr;
double Hinc = 0.0;
double Sinc = 0.0;
double Smixing = 0.0;
double Si;
double Cp = Therm_CpiMolar(therm, ptNGPar);
ptNGPar->dHo = Therm_Ho(therm, ptNGPar);
Si = Therm_So(therm, ptNGPar);
ptNGPar->dCpi = (Cp * 1000.0) / ptNGPar->dMrx;
for (int i = 0; i < therm->GK_points; i++) {
double x = ptNGPar->dDf * (1.0 + therm->GK_root[i]) / 2.0;
Detail_zdetail(detail, x);
Detail_dZdT(detail, x);
Detail_d2ZdT2(detail, x);
Hinc += therm->GK_weight[i] * detail->ddZdT / x;
Cvinc += therm->GK_weight[i] * (2.0 * detail->ddZdT + ptNGPar->dTf * detail->dd2ZdT2) / x;
Sinc += therm->GK_weight[i] * (detail->dZ + ptNGPar->dTf * detail->ddZdT - 1.0) / x;
x = ptNGPar->dDf * (1.0 - therm->GK_root[i]) / 2.0;
Detail_zdetail(detail, x);
Detail_dZdT(detail, x);
Detail_d2ZdT2(detail, x);
Hinc += therm->GK_weight[i] * detail->ddZdT / x;
Cvinc += therm->GK_weight[i] * (2.0 * detail->ddZdT + ptNGPar->dTf * detail->dd2ZdT2) / x;
Sinc += therm->GK_weight[i] * (detail->dZ + ptNGPar->dTf * detail->ddZdT - 1.0) / x;
}
Detail_zdetail(detail, ptNGPar->dDf);
Detail_dZdT(detail, ptNGPar->dDf);
Detail_d2ZdT2(detail, ptNGPar->dDf);
Cvr = Cp - RGAS * (1.0 + ptNGPar->dTf * Cvinc * 0.5 * ptNGPar->dDf);
double a = (ptNGPar->dZf + ptNGPar->dTf * detail->ddZdT);
double b = (ptNGPar->dZf + ptNGPar->dDf * detail->ddZdD);
//double dPdT = RGAS * ptNGPar->dDf * a;
//double dPdD = RGAS * ptNGPar->dTf * b;
Cpr = Cvr + RGAS * ((a * a) / b);
Cpr /= ptNGPar->dMrx;
Cvr /= ptNGPar->dMrx;
ptNGPar->dCv = Cvr * 1000.0;
ptNGPar->dCp = Cpr * 1000.0;
ptNGPar->dH = ptNGPar->dHo + 1000.0 * RGAS * ptNGPar->dTf * (
ptNGPar->dZf - 1.0 - ptNGPar->dTf * Hinc * 0.5 * ptNGPar->dDf) / ptNGPar->dMrx;
for (int i = 0; i < NUMBEROFCOMPONENTS; i++) {
if (ptNGPar->adMixture[i] != 0) Smixing += ptNGPar->adMixture[i] * log(ptNGPar->adMixture[i]);
}
Smixing *= RGAS;
ptNGPar->dS = Si - Smixing - 1000.0 * RGAS * (
log(ptNGPar->dPf / 101325.0) - log(ptNGPar->dZf) + Sinc * 0.5 * ptNGPar->dDf) / ptNGPar->dMrx;
}
void Therm_HS_Mode(Therm *therm, NGParSTRUCT *ptNGPar, Detail *detail, double H, double S, int bGuess) {
double s0 = S;
double h0 = H;
double t1, t2, tmin, tmax;
double p1, p2, px, pmin, pmax;
double delta1, delta2;
double tolerance = 0.001;
if (bGuess) {
t1 = ptNGPar->dTf;
px = ptNGPar->dPf;
pmax = px * 2.0;
pmin = px * 0.1;
tmax = t1 * 1.5;
tmin = t1 * 0.67;
} else {
t1 = 273.15;
px = 1013250.0;
pmax = P_MAX;
pmin = 10000.0;
tmax = T_MAX;
tmin = T_MIN;
}
t2 = t1 + 10.0;
Detail_Run(detail, ptNGPar);
double h1 = Therm_H(therm, ptNGPar, detail) - h0;
for (int i = 0; i < MAX_NUM_OF_ITERATIONS; i++) {
ptNGPar->dTf = t2;
p1 = px;
p2 = px * 0.1;
ptNGPar->dPf = p1;
Detail_Run(detail, ptNGPar);
double s1 = Therm_S(therm, ptNGPar, detail) - s0;
for (int j = 0; j < MAX_NUM_OF_ITERATIONS; j++) {
ptNGPar->dPf = p2;
Detail_Run(detail, ptNGPar);
double s2 = Therm_S(therm, ptNGPar, detail) - s0;
delta2 = fabs(s1 - s2) / s0;
if (delta2 < tolerance) break;
double p0 = p2;
p2 = (p1 * s2 - p2 * s1) / (s2 - s1);
if (p2 <= pmin) p2 = pmin;
if (p2 >= pmax) p2 = pmax;
p1 = p0;
s1 = s2;
}
if (ptNGPar->lStatus == MAX_NUM_OF_ITERATIONS_EXCEEDED) break;
double h2 = Therm_H(therm, ptNGPar, detail) - h0;
delta1 = fabs(h1 - h2) / h0;
if (delta1 < tolerance && i > 0) break;
double t0 = t2;
t2 = (t1 * h2 - t2 * h1) / (h2 - h1);
if (t2 >= tmax) t2 = tmax;
if (t2 <= tmin) {
t2 = t0 + 10.0;
ptNGPar->dTf = t2;
Detail_Run(detail, ptNGPar);
h2 = Therm_H(therm, ptNGPar, detail) - h0;
}
t1 = t0;
h1 = h2;
}
if (ptNGPar->lStatus == MAX_NUM_OF_ITERATIONS_EXCEEDED) {
ptNGPar->lStatus = MAX_NUM_OF_ITERATIONS_EXCEEDED;
}
}
double Therm_H(Therm *therm, NGParSTRUCT *ptNGPar, Detail *detail) {
double Hinc = 0.0;
ptNGPar->dHo = Therm_Ho(therm, ptNGPar);
for (int i = 0; i < therm->GK_points; i++) {
double x = ptNGPar->dDf * (1.0 + therm->GK_root[i]) / 2.0;
Detail_zdetail(detail, x);
Detail_dZdT(detail, x);
Detail_d2ZdT2(detail, x);
Hinc += therm->GK_weight[i] * detail->ddZdT / x;
if (i == 10) break;
x = ptNGPar->dDf * (1.0 - therm->GK_root[i]) / 2.0;
Detail_zdetail(detail, x);
Detail_dZdT(detail, x);
Detail_d2ZdT2(detail, x);
Hinc += therm->GK_weight[i] * detail->ddZdT / x;
}
Detail_zdetail(detail, ptNGPar->dDf);
Detail_dZdT(detail, ptNGPar->dDf);
Detail_d2ZdT2(detail, ptNGPar->dDf);
ptNGPar->dH = ptNGPar->dHo + 1000.0 * RGAS * ptNGPar->dTf * (
ptNGPar->dZf - 1.0 - ptNGPar->dTf * Hinc * 0.5 * ptNGPar->dDf) / ptNGPar->dMrx;
return ptNGPar->dH;
}
double Therm_S(Therm *therm, NGParSTRUCT *ptNGPar, Detail *detail) {
double Sinc;
double Smixing;
double x;
int i;
Sinc = 0.0;
Smixing = 0.0;
for (i = 0; i < therm->GK_points; i++) {
x = ptNGPar->dDf * (1.0 + therm->GK_root[i]) / 2.0;
Detail_zdetail(detail, x);
Detail_dZdT(detail, x);
Detail_d2ZdT2(detail, x);
Sinc += therm->GK_weight[i] * (detail->dZ + ptNGPar->dTf * detail->ddZdT - 1.0) / x;
if (i == 10) break;
x = ptNGPar->dDf * (1.0 - therm->GK_root[i]) / 2.0;
Detail_zdetail(detail, x);
Detail_dZdT(detail, x);
Detail_d2ZdT2(detail, x);
Sinc += therm->GK_weight[i] * (detail->dZ + ptNGPar->dTf * detail->ddZdT - 1.0) / x;
}
Detail_zdetail(detail, ptNGPar->dDf);
Detail_dZdT(detail, ptNGPar->dDf);
Detail_d2ZdT2(detail, ptNGPar->dDf);
if (ptNGPar->dTf != therm->dTold || ptNGPar->dMrx != therm->dMrxold) {
therm->dSi = Therm_So(therm, ptNGPar);
therm->dTold = ptNGPar->dTf;
therm->dMrxold = ptNGPar->dMrx;
}
for (i = 0; i < NUMBEROFCOMPONENTS; i++) {
if (ptNGPar->adMixture[i] != 0) Smixing += ptNGPar->adMixture[i] * log(ptNGPar->adMixture[i]);
}
Smixing *= RGAS;
ptNGPar->dS = therm->dSi - Smixing - 1000.0 * RGAS * (
log(ptNGPar->dPf / 101325.0) - log(ptNGPar->dZf) + Sinc * 0.5 * ptNGPar->dDf) / ptNGPar->dMrx;
return (ptNGPar->dS);
}

View File

@ -0,0 +1,60 @@
/*************************************************************************
* <EFBFBD>ļ<EFBFBD>: therm.h
* <EFBFBD><EFBFBD><EFBFBD><EFBFBD>: Therm<EFBFBD><EFBFBD><EFBFBD>ͷ<EFBFBD>ļ<EFBFBD>
**************************************************************************/
#ifndef _THERM_H
#define _THERM_H
#include "NGCal.h"
#include "Detail.h"
typedef struct Therm {
double CAL_TH;
int coefA;
int coefB;
int coefC;
int coefD;
int coefE;
int coefF;
int coefG;
int coefH;
int coefI;
int coefJ;
int coefK;
double dPdD;
double dPdT;
double dSi;
double dTold;
double dMrxold;
int GK_points;
double GK_root[5];
double GK_weight[5];
double ThermConstants[21][11];
} Therm;
void Therm_Init(Therm *therm);
void Therm_Run(Therm *therm, NGParSTRUCT *ptNGPar, Detail *detail);
double Therm_CpiMolar(Therm *therm, NGParSTRUCT *ptNGPar);
double Therm_coth(double x);
double Therm_Ho(Therm *therm, NGParSTRUCT *ptNGPar);
double Therm_So(Therm *therm, NGParSTRUCT *ptNGPar);
void Therm_CprCvrHS(Therm *therm, NGParSTRUCT *ptNGPar, Detail *detail);
void Therm_HS_Mode(Therm *therm, NGParSTRUCT *ptNGPar, Detail *detail, double H, double S, int bGuess);
double Therm_H(Therm *therm, NGParSTRUCT *ptNGPar, Detail *detail);
double Therm_S(Therm *therm, NGParSTRUCT *ptNGPar, Detail *detail);
#endif

119
applications/usart/usart.c Normal file
View File

@ -0,0 +1,119 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-07-21 Administrator the first version
******************************************************************************
* @file bsp_debug_usart.c
* @author fire
* @version V1.0
* @date 2019-xx-xx
* @brief 使1c库printf函数到usart端口
******************************************************************************
* @attention
*
* : STM32 H750
* :http://www.firebbs.cn
* :http://firestm32.taobao.com
*
******************************************************************************
*/
#ifndef APPLICATIONS_USART_USART_C_
#define APPLICATIONS_USART_USART_C_
#include "usart.h"
UART_HandleTypeDef UartHandle;
extern uint8_t ucTemp;
/**
* @brief DEBUG_USART GPIO ,115200 8-N-1
* @param
* @retval
*/
void DEBUG_USART_Config(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
RCC_PeriphCLKInitTypeDef RCC_PeriphClkInit;
DEBUG_USART_RX_GPIO_CLK_ENABLE();
DEBUG_USART_TX_GPIO_CLK_ENABLE();
/* 配置串口1时钟源*/
RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1;
RCC_PeriphClkInit.Usart16ClockSelection = RCC_USART16CLKSOURCE_D2PCLK2;
HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit);
/* 使能串口1时钟 */
DEBUG_USART_CLK_ENABLE();
/* 配置Tx引脚为复用功能 */
GPIO_InitStruct.Pin = DEBUG_USART_TX_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = DEBUG_USART_TX_AF;
HAL_GPIO_Init(DEBUG_USART_TX_GPIO_PORT, &GPIO_InitStruct);
/* 配置Rx引脚为复用功能 */
GPIO_InitStruct.Pin = DEBUG_USART_RX_PIN;
GPIO_InitStruct.Alternate = DEBUG_USART_RX_AF;
HAL_GPIO_Init(DEBUG_USART_RX_GPIO_PORT, &GPIO_InitStruct);
/* 配置串DEBUG_USART 模式 */
UartHandle.Instance = DEBUG_USART;
UartHandle.Init.BaudRate = 115200;
UartHandle.Init.WordLength = UART_WORDLENGTH_8B;
UartHandle.Init.StopBits = UART_STOPBITS_1;
UartHandle.Init.Parity = UART_PARITY_NONE;
UartHandle.Init.Mode = UART_MODE_TX_RX;
UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
UartHandle.Init.OverSampling = UART_OVERSAMPLING_16;
UartHandle.Init.OneBitSampling = UART_ONEBIT_SAMPLING_DISABLED;
UartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
HAL_UART_Init(&UartHandle);
/*串口1中断初始化 */
HAL_NVIC_SetPriority(DEBUG_USART_IRQ, 0, 0);
HAL_NVIC_EnableIRQ(DEBUG_USART_IRQ);
/*配置串口接收中断 */
__HAL_UART_ENABLE_IT(&UartHandle,UART_IT_RXNE);
}
/***************** 发送字符串 **********************/
void Usart_SendString( USART_TypeDef * pUSARTx, uint8_t *str)
{
unsigned int k=0;
do
{
HAL_UART_Transmit( &UartHandle,(uint8_t *)(str + k) ,1,1000);
k++;
} while(*(str + k)!='\0');
}
///重定向c库函数printf到串口DEBUG_USART重定向后可使用printf函数
int fputc(int ch, FILE *f)
{
/* 发送一个字节数据到串口DEBUG_USART */
HAL_UART_Transmit(&UartHandle, (uint8_t *)&ch, 1, 1000);
return (ch);
}
///重定向c库函数scanf到串口DEBUG_USART重写向后可使用scanf、getchar等函数
int fgetc(FILE *f)
{
int ch;
HAL_UART_Receive(&UartHandle, (uint8_t *)&ch, 1, 1000);
return (ch);
}
/*********************************************END OF FILE**********************/
#endif /* APPLICATIONS_USART_USART_C_ */

View File

@ -0,0 +1,49 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-07-21 Administrator the first version
*/
#ifndef APPLICATIONS_USART_USART_H_
#define APPLICATIONS_USART_USART_H_
#include "stm32h7xx.h"
#include <stdio.h>
//引脚定义
/*******************************************************/
#define DEBUG_USART USART1
#define DEBUG_USART_CLK_ENABLE() __USART1_CLK_ENABLE();
#define DEBUG_USART_RX_GPIO_PORT GPIOA
#define DEBUG_USART_RX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
#define DEBUG_USART_RX_PIN GPIO_PIN_10
#define DEBUG_USART_RX_AF GPIO_AF7_USART1
#define DEBUG_USART_TX_GPIO_PORT GPIOA
#define DEBUG_USART_TX_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
#define DEBUG_USART_TX_PIN GPIO_PIN_9
#define DEBUG_USART_TX_AF GPIO_AF7_USART1
#define DEBUG_USART_IRQHandler USART1_IRQHandler
#define DEBUG_USART_IRQ USART1_IRQn
/************************************************************/
//串口波特率
#define DEBUG_USART_BAUDRATE 115200
void Usart_SendString( USART_TypeDef * pUSARTx, uint8_t *str);
void DEBUG_USART_Config(void);
//int fputc(int ch, FILE *f);
extern UART_HandleTypeDef UartHandle;
#endif /* APPLICATIONS_USART_USART_H_ */

36
drivers/board.c Normal file
View File

@ -0,0 +1,36 @@
/*
* Copyright (c) 2006-2025, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-07-21 RealThread first version
*/
#include <rtthread.h>
#include <board.h>
#include <drv_common.h>
rt_weak void rt_hw_board_init()
{
extern void hw_board_init(char *clock_src, int32_t clock_src_freq, int32_t clock_target_freq);
/* Heap initialization */
#if defined(RT_USING_HEAP)
rt_system_heap_init((void *) HEAP_BEGIN, (void *) HEAP_END);
#endif
hw_board_init(BSP_CLOCK_SOURCE, BSP_CLOCK_SOURCE_FREQ_MHZ, BSP_CLOCK_SYSTEM_FREQ_MHZ);
/* Set the shell console output device */
#if defined(RT_USING_DEVICE) && defined(RT_USING_CONSOLE)
rt_console_set_device(RT_CONSOLE_DEVICE_NAME);
#endif
/* Board underlying hardware initialization */
#ifdef RT_USING_COMPONENTS_INIT
rt_components_board_init();
#endif
}

371
drivers/board.h Normal file
View File

@ -0,0 +1,371 @@
/*
* Copyright (c) 2006-2025, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-07-21 RealThread first version
*/
#ifndef __BOARD_H__
#define __BOARD_H__
#include <stm32h7xx.h>
#include <drv_common.h>
#ifdef __cplusplus
extern "C"
{
#endif
/*-------------------------- CHIP CONFIG BEGIN --------------------------*/
#define CHIP_FAMILY_STM32
#define CHIP_SERIES_STM32H7
#define CHIP_NAME_STM32H750XBHX
/*-------------------------- CHIP CONFIG END --------------------------*/
/*-------------------------- ROM/RAM CONFIG BEGIN --------------------------*/
#define ROM_START ((uint32_t)0x08000000)
#define ROM_SIZE (128 * 1024)
#define ROM_END ((uint32_t)(ROM_START + ROM_SIZE))
#define RAM_START (0x20000000)
#define RAM_SIZE (128 * 1024)
#define RAM_END (RAM_START + RAM_SIZE)
/*-------------------------- ROM/RAM CONFIG END --------------------------*/
/*-------------------------- CLOCK CONFIG BEGIN --------------------------*/
#define BSP_CLOCK_SOURCE ("HSI")
#define BSP_CLOCK_SOURCE_FREQ_MHZ ((int32_t)0)
#define BSP_CLOCK_SYSTEM_FREQ_MHZ ((int32_t)180)
/*-------------------------- CLOCK CONFIG END --------------------------*/
/*-------------------------- UART CONFIG BEGIN --------------------------*/
/** After configuring corresponding UART or UART DMA, you can use it.
*
* STEP 1, define macro define related to the serial port opening based on the serial port number
* such as #define BSP_USING_UART1
*
* STEP 2, according to the corresponding pin of serial port, define the related serial port information macro
* such as #define BSP_UART1_TX_PIN "PA9"
* #define BSP_UART1_RX_PIN "PA10"
*
* STEP 3, if you want using SERIAL DMA, you must open it in the RT-Thread Settings.
* RT-Thread Setting -> Components -> Device Drivers -> Serial Device Drivers -> Enable Serial DMA Mode
*
* STEP 4, according to serial port number to define serial port tx/rx DMA function in the board.h file
* such as #define BSP_UART1_RX_USING_DMA
*
*/
#define BSP_USING_UART2
#define BSP_UART2_TX_PIN "PA9"
#define BSP_UART2_RX_PIN "PA10"
/*-------------------------- UART CONFIG END --------------------------*/
/*-------------------------- I2C CONFIG BEGIN --------------------------*/
/** if you want to use i2c bus(soft simulate) you can use the following instructions.
*
* STEP 1, open i2c driver framework(soft simulate) support in the RT-Thread Settings file
*
* STEP 2, define macro related to the i2c bus
* such as #define BSP_USING_I2C1
*
* STEP 3, according to the corresponding pin of i2c port, modify the related i2c port and pin information
* such as #define BSP_I2C1_SCL_PIN GET_PIN(port, pin) -> GET_PIN(C, 11)
* #define BSP_I2C1_SDA_PIN GET_PIN(port, pin) -> GET_PIN(C, 12)
*/
/*#define BSP_USING_I2C1*/
#ifdef BSP_USING_I2C1
#define BSP_I2C1_SCL_PIN GET_PIN(port, pin)
#define BSP_I2C1_SDA_PIN GET_PIN(port, pin)
#endif
/*#define BSP_USING_I2C2*/
#ifdef BSP_USING_I2C2
#define BSP_I2C2_SCL_PIN GET_PIN(port, pin)
#define BSP_I2C2_SDA_PIN GET_PIN(port, pin)
#endif
/*-------------------------- I2C CONFIG END --------------------------*/
/*-------------------------- SPI CONFIG BEGIN --------------------------*/
/** if you want to use spi bus you can use the following instructions.
*
* STEP 1, open spi driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the spi bus
* such as #define BSP_USING_SPI1
*
* STEP 3, copy your spi init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support spi peripherals. define macro related to the peripherals
* such as #define HAL_SPI_MODULE_ENABLED
*/
/*#define BSP_USING_SPI1*/
/*#define BSP_USING_SPI2*/
/*#define BSP_USING_SPI3*/
/*-------------------------- SPI CONFIG END --------------------------*/
/*-------------------------- QSPI CONFIG BEGIN --------------------------*/
/** if you want to use qspi you can use the following instructions.
*
* STEP 1, open qspi driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the qspi
* such as #define BSP_USING_QSPI
*
* STEP 3, copy your qspi init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_QSPI_MspInit(QSPI_HandleTypeDef* hqspi)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support qspi peripherals. define macro related to the peripherals
* such as #define HAL_QSPI_MODULE_ENABLED
*
*/
/*#define BSP_USING_QSPI*/
/*-------------------------- QSPI CONFIG END --------------------------*/
/*-------------------------- PWM CONFIG BEGIN --------------------------*/
/** if you want to use pwm you can use the following instructions.
*
* STEP 1, open pwm driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the pwm
* such as #define BSP_USING_PWM1
*
* STEP 3, copy your pwm timer init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end if board.c file
* such as void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base) and
* void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support pwm peripherals. define macro related to the peripherals
* such as #define HAL_TIM_MODULE_ENABLED
*
*/
/*#define BSP_USING_PWM1*/
/*#define BSP_USING_PWM2*/
/*#define BSP_USING_PWM3*/
/*-------------------------- PWM CONFIG END --------------------------*/
/*-------------------------- ADC CONFIG BEGIN --------------------------*/
/** if you want to use adc you can use the following instructions.
*
* STEP 1, open adc driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the adc
* such as #define BSP_USING_ADC1
*
* STEP 3, copy your adc init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support adc peripherals. define macro related to the peripherals
* such as #define HAL_ADC_MODULE_ENABLED
*
*/
/*#define BSP_USING_ADC1*/
/*#define BSP_USING_ADC2*/
/*#define BSP_USING_ADC3*/
/*-------------------------- ADC CONFIG END --------------------------*/
/*-------------------------- WDT CONFIG BEGIN --------------------------*/
/** if you want to use wdt you can use the following instructions.
*
* STEP 1, open wdt driver framework support in the RT-Thread Settings file
*
* STEP 2, modify your stm32xxxx_hal_config.h file to support wdt peripherals. define macro related to the peripherals
* such as #define HAL_IWDG_MODULE_ENABLED
*
*/
/*-------------------------- WDT CONFIG END --------------------------*/
/*-------------------------- HARDWARE TIMER CONFIG BEGIN --------------------------*/
/** if you want to use hardware timer you can use the following instructions.
*
* STEP 1, open hwtimer driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the hwtimer
* such as #define BSP_USING_TIM and
* #define BSP_USING_TIM1
*
* STEP 3, copy your hardwire timer init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support hardwere timer peripherals. define macro related to the peripherals
* such as #define HAL_TIM_MODULE_ENABLED
*
*/
/*#define BSP_USING_TIM*/
#ifdef BSP_USING_TIM
/*#define BSP_USING_TIM15*/
/*#define BSP_USING_TIM16*/
/*#define BSP_USING_TIM17*/
#endif
/*-------------------------- HAREWARE TIMER CONFIG END --------------------------*/
/*-------------------------- RTC CONFIG BEGIN --------------------------*/
/** if you want to use rtc(hardware) you can use the following instructions.
*
* STEP 1, open rtc driver framework(hardware) support in the RT-Thread Settings file
*
* STEP 2, define macro related to the rtc
* such as BSP_USING_ONCHIP_RTC
*
* STEP 3, modify your stm32xxxx_hal_config.h file to support rtc peripherals. define macro related to the peripherals
* such as #define HAL_RTC_MODULE_ENABLED
*
*/
/*#define BSP_USING_ONCHIP_RTC*/
/*-------------------------- RTC CONFIG END --------------------------*/
/*-------------------------- SDIO CONFIG BEGIN --------------------------*/
/** if you want to use sdio you can use the following instructions.
*
* STEP 1, open sdio driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the sdio
* such as BSP_USING_SDIO
*
* STEP 3, copy your sdio init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_SD_MspInit(SD_HandleTypeDef* hsd)
*
* STEP 4, modify your stm32xxxx_hal_config.h file to support sdio peripherals. define macro related to the peripherals
* such as #define HAL_SD_MODULE_ENABLED
*
* STEP 5, config your device file system or another applications
*
*/
/*#define BSP_USING_SDIO*/
/*-------------------------- SDIO CONFIG END --------------------------*/
/*-------------------------- ETH CONFIG BEGIN --------------------------*/
/** if you want to use eth you can use the following instructions.
*
* STEP 1, define macro related to the eth
* such as BSP_USING_ETH
*
* STEP 2, copy your eth init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end if board.c file
* such as void HAL_ETH_MspInit(ETH_HandleTypeDef* heth)
*
* STEP 3, modify your stm32xxxx_hal_config.h file to support eth peripherals. define macro related to the peripherals
* such as #define HAL_ETH_MODULE_ENABLED
*
* STEP 4, config your phy type
* such as #define PHY_USING_LAN8720A
* #define PHY_USING_DM9161CEP
* #define PHY_USING_DP83848C
* STEP 5, implement your phy reset function in the end of board.c file
* void phy_reset(void)
*
* STEP 6, config your lwip or other network stack
*
*/
/*#define BSP_USING_ETH*/
#ifdef BSP_USING_ETH
/*#define PHY_USING_LAN8720A*/
/*#define PHY_USING_DM9161CEP*/
/*#define PHY_USING_DP83848C*/
#endif
/*-------------------------- ETH CONFIG END --------------------------*/
/*-------------------------- USB HOST CONFIG BEGIN --------------------------*/
/** if you want to use usb host you can use the following instructions.
*
* STEP 1, open usb host driver framework support in the RT-Thread Settings file
*
* STEP 2, define macro related to the usb host
* such as BSP_USING_USBHOST
*
* STEP 3, copy your usb host init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_HCD_MspInit(HCD_HandleTypeDef* hhcd)
*
* STEP 4, config your usb peripheral clock in SystemClock_Config() generated by STM32CubeMX and replace this function in board.c
*
* STEP 5, modify your stm32xxxx_hal_config.h file to support usb host peripherals. define macro related to the peripherals
* such as #define HAL_HCD_MODULE_ENABLED
*
*/
/*#define BSP_USING_USBHOST*/
/*-------------------------- USB HOST CONFIG END --------------------------*/
/*-------------------------- USB DEVICE CONFIG BEGIN --------------------------*/
/** if you want to use usb device you can use the following instructions.
*
* STEP 1, open usb device driver framework support in the RT-Thread Settings file
*
* STEP 2 define macro related to the usb device
* such as BSP_USING_USBDEVICE
*
* STEP 3, copy your usb device init function from stm32xxxx_hal_msp.c generated by stm32cubemx to the end of board.c file
* such as void HAL_PCD_MspInit(PCD_HandleTypeDef* hpcd)
*
* STEP 4, config your usb peripheral clock in SystemClock_Config() generated by STM32CubeMX and replace this function in board.c
*
* STEP 5, modify your stm32xxxx_hal_config.h file to support usb device peripherals. define macro related to the peripherals
* such as #define HAL_PCD_MODULE_ENABLED
*
*/
/*#define BSP_USING_USBDEVICE*/
/*-------------------------- USB DEVICE CONFIG END --------------------------*/
/*-------------------------- ON_CHIP_FLASH CONFIG BEGIN --------------------------*/
/** if you want to use on chip flash you can use the following instructions.
*
* STEP 1 define macro related to the on chip flash
* such as BSP_USING_ON_CHIP_FLASH
*
* STEP 2, modify your stm32xxxx_hal_config.h file to support on chip flash peripherals. define macro related to the peripherals
* such as #define HAL_FLASH_MODULE_ENABLED
*
*/
/*#define BSP_USING_ON_CHIP_FLASH*/
/*-------------------------- ON_CHIP_FLASH CONFIG END --------------------------*/
#ifdef __cplusplus
}
#endif
#endif /* __BOARD_H__ */

286
drivers/drv_adc.c Normal file
View File

@ -0,0 +1,286 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-05 zylx first version
* 2018-12-12 greedyhao Porting for stm32f7xx
* 2019-02-01 yuneizhilin fix the stm32_adc_init function initialization issue
*/
#include <board.h>
#include<rtthread.h>
#include<rtdevice.h>
#if defined(BSP_USING_ADC1) || defined(BSP_USING_ADC2) || defined(BSP_USING_ADC3)
#include "drv_config.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.adc"
#include <drv_log.h>
static ADC_HandleTypeDef adc_config[] =
{
#ifdef BSP_USING_ADC1
ADC1_CONFIG,
#endif
#ifdef BSP_USING_ADC2
ADC2_CONFIG,
#endif
#ifdef BSP_USING_ADC3
ADC3_CONFIG,
#endif
};
struct stm32_adc
{
ADC_HandleTypeDef ADC_Handler;
struct rt_adc_device stm32_adc_device;
};
static struct stm32_adc stm32_adc_obj[sizeof(adc_config) / sizeof(adc_config[0])];
static rt_err_t stm32_adc_enabled(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled)
{
ADC_HandleTypeDef *stm32_adc_handler;
RT_ASSERT(device != RT_NULL);
stm32_adc_handler = device->parent.user_data;
if (enabled)
{
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0)
ADC_Enable(stm32_adc_handler);
#else
__HAL_ADC_ENABLE(stm32_adc_handler);
#endif
}
else
{
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0)
ADC_Disable(stm32_adc_handler);
#else
__HAL_ADC_DISABLE(stm32_adc_handler);
#endif
}
return RT_EOK;
}
static rt_uint32_t stm32_adc_get_channel(rt_uint32_t channel)
{
rt_uint32_t stm32_channel = 0;
switch (channel)
{
case 0:
stm32_channel = ADC_CHANNEL_0;
break;
case 1:
stm32_channel = ADC_CHANNEL_1;
break;
case 2:
stm32_channel = ADC_CHANNEL_2;
break;
case 3:
stm32_channel = ADC_CHANNEL_3;
break;
case 4:
stm32_channel = ADC_CHANNEL_4;
break;
case 5:
stm32_channel = ADC_CHANNEL_5;
break;
case 6:
stm32_channel = ADC_CHANNEL_6;
break;
case 7:
stm32_channel = ADC_CHANNEL_7;
break;
case 8:
stm32_channel = ADC_CHANNEL_8;
break;
case 9:
stm32_channel = ADC_CHANNEL_9;
break;
case 10:
stm32_channel = ADC_CHANNEL_10;
break;
case 11:
stm32_channel = ADC_CHANNEL_11;
break;
case 12:
stm32_channel = ADC_CHANNEL_12;
break;
case 13:
stm32_channel = ADC_CHANNEL_13;
break;
case 14:
stm32_channel = ADC_CHANNEL_14;
break;
case 15:
stm32_channel = ADC_CHANNEL_15;
break;
#ifdef ADC_CHANNEL_16
case 16:
stm32_channel = ADC_CHANNEL_16;
break;
#endif
case 17:
stm32_channel = ADC_CHANNEL_17;
break;
#ifdef ADC_CHANNEL_18
case 18:
stm32_channel = ADC_CHANNEL_18;
break;
#endif
#ifdef ADC_CHANNEL_19
case 19:
stm32_channel = ADC_CHANNEL_19;
break;
#endif
}
return stm32_channel;
}
static rt_err_t stm32_get_adc_value(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value)
{
ADC_ChannelConfTypeDef ADC_ChanConf;
ADC_HandleTypeDef *stm32_adc_handler;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(value != RT_NULL);
stm32_adc_handler = device->parent.user_data;
rt_memset(&ADC_ChanConf, 0, sizeof(ADC_ChanConf));
#ifndef ADC_CHANNEL_16
if (channel == 16)
{
LOG_E("ADC channel must not be 16.");
return -RT_ERROR;
}
#endif
/* ADC channel number is up to 17 */
#if !defined(ADC_CHANNEL_18)
if (channel <= 17)
/* ADC channel number is up to 19 */
#elif defined(ADC_CHANNEL_19)
if (channel <= 19)
/* ADC channel number is up to 18 */
#else
if (channel <= 18)
#endif
{
/* set stm32 ADC channel */
ADC_ChanConf.Channel = stm32_adc_get_channel(channel);
}
else
{
#if !defined(ADC_CHANNEL_18)
LOG_E("ADC channel must be between 0 and 17.");
#elif defined(ADC_CHANNEL_19)
LOG_E("ADC channel must be between 0 and 19.");
#else
LOG_E("ADC channel must be between 0 and 18.");
#endif
return -RT_ERROR;
}
ADC_ChanConf.Rank = 1;
#if defined(SOC_SERIES_STM32F0)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
#elif defined(SOC_SERIES_STM32F1)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_55CYCLES_5;
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_112CYCLES;
#elif defined(SOC_SERIES_STM32L4)
ADC_ChanConf.SamplingTime = ADC_SAMPLETIME_247CYCLES_5;
#endif
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4)
ADC_ChanConf.Offset = 0;
#endif
#ifdef SOC_SERIES_STM32L4
ADC_ChanConf.OffsetNumber = ADC_OFFSET_NONE;
ADC_ChanConf.SingleDiff = LL_ADC_SINGLE_ENDED;
#endif
HAL_ADC_ConfigChannel(stm32_adc_handler, &ADC_ChanConf);
/* start ADC */
HAL_ADC_Start(stm32_adc_handler);
/* Wait for the ADC to convert */
HAL_ADC_PollForConversion(stm32_adc_handler, 100);
/* get ADC value */
*value = (rt_uint32_t)HAL_ADC_GetValue(stm32_adc_handler);
return RT_EOK;
}
static const struct rt_adc_ops stm_adc_ops =
{
.enabled = stm32_adc_enabled,
.convert = stm32_get_adc_value,
};
static int stm32_adc_init(void)
{
int result = RT_EOK;
/* save adc name */
char name_buf[5] = {'a', 'd', 'c', '0', 0};
int i = 0;
for (i = 0; i < sizeof(adc_config) / sizeof(adc_config[0]); i++)
{
/* ADC init */
name_buf[3] = '0';
stm32_adc_obj[i].ADC_Handler = adc_config[i];
#if defined(ADC1)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC1)
{
name_buf[3] = '1';
}
#endif
#if defined(ADC2)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC2)
{
name_buf[3] = '2';
}
#endif
#if defined(ADC3)
if (stm32_adc_obj[i].ADC_Handler.Instance == ADC3)
{
name_buf[3] = '3';
}
#endif
if (HAL_ADC_Init(&stm32_adc_obj[i].ADC_Handler) != HAL_OK)
{
LOG_E("%s init failed", name_buf);
result = -RT_ERROR;
}
else
{
/* register ADC device */
if (rt_hw_adc_register(&stm32_adc_obj[i].stm32_adc_device, name_buf, &stm_adc_ops, &stm32_adc_obj[i].ADC_Handler) == RT_EOK)
{
LOG_D("%s init success", name_buf);
}
else
{
LOG_E("%s register failed", name_buf);
result = -RT_ERROR;
}
}
}
return result;
}
INIT_BOARD_EXPORT(stm32_adc_init);
#endif /* BSP_USING_ADC */

73
drivers/drv_clk.c Normal file
View File

@ -0,0 +1,73 @@
#include <board.h>
#include <rtthread.h>
#include "drv_common.h"
#define DBG_TAG "board"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
void system_clock_config(int target_freq_mhz)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Supply configuration update enable
*/
HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);
while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 60;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
}
int clock_information(void)
{
LOG_D("System Clock information");
LOG_D("SYSCLK_Frequency = %d", HAL_RCC_GetSysClockFreq());
LOG_D("HCLK_Frequency = %d", HAL_RCC_GetHCLKFreq());
LOG_D("PCLK1_Frequency = %d", HAL_RCC_GetPCLK1Freq());
LOG_D("PCLK2_Frequency = %d", HAL_RCC_GetPCLK2Freq());
return RT_EOK;
}
INIT_BOARD_EXPORT(clock_information);
void clk_init(char *clk_source, int source_freq, int target_freq)
{
system_clock_config(target_freq);
}

149
drivers/drv_common.c Normal file
View File

@ -0,0 +1,149 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-7 SummerGift first version
*/
#include "drv_common.h"
#include "board.h"
#ifdef RT_USING_FINSH
#include <finsh.h>
static void reboot(uint8_t argc, char **argv)
{
rt_hw_cpu_reset();
}
FINSH_FUNCTION_EXPORT_ALIAS(reboot, __cmd_reboot, Reboot System);
#endif /* RT_USING_FINSH */
/* SysTick configuration */
void rt_hw_systick_init(void)
{
#if defined (SOC_SERIES_STM32H7)
HAL_SYSTICK_Config((HAL_RCCEx_GetD1SysClockFreq()) / RT_TICK_PER_SECOND);
#else
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / RT_TICK_PER_SECOND);
#endif
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
/**
* This is the timer interrupt service routine.
*
*/
void SysTick_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_IncTick();
rt_tick_increase();
/* leave interrupt */
rt_interrupt_leave();
}
uint32_t HAL_GetTick(void)
{
return rt_tick_get() * 1000 / RT_TICK_PER_SECOND;
}
void HAL_SuspendTick(void)
{
}
void HAL_ResumeTick(void)
{
}
void HAL_Delay(__IO uint32_t Delay)
{
}
/* re-implement tick interface for STM32 HAL */
HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
/* Return function status */
return HAL_OK;
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
void _Error_Handler(char *s, int num)
{
/* USER CODE BEGIN Error_Handler */
/* User can add his own implementation to report the HAL error return state */
while(1)
{
}
/* USER CODE END Error_Handler */
}
/**
* This function will delay for some us.
*
* @param us the delay time of us
*/
void rt_hw_us_delay(rt_uint32_t us)
{
rt_uint32_t start, now, delta, reload, us_tick;
start = SysTick->VAL;
reload = SysTick->LOAD;
us_tick = SystemCoreClock / 1000000UL;
do {
now = SysTick->VAL;
delta = start > now ? start - now : reload + start - now;
} while(delta < us_tick * us);
}
/**
* This function will initial STM32 board.
*/
void hw_board_init(char *clock_src, int32_t clock_src_freq, int32_t clock_target_freq)
{
extern void rt_hw_systick_init(void);
extern void clk_init(char *clk_source, int source_freq, int target_freq);
#ifdef SCB_EnableICache
/* Enable I-Cache---------------------------------------------------------*/
SCB_EnableICache();
#endif
#ifdef SCB_EnableDCache
/* Enable D-Cache---------------------------------------------------------*/
SCB_EnableDCache();
#endif
/* HAL_Init() function is called at the beginning of the program */
HAL_Init();
/* enable interrupt */
__set_PRIMASK(0);
/* System clock initialization */
clk_init(clock_src, clock_src_freq, clock_target_freq);
/* disbale interrupt */
__set_PRIMASK(1);
rt_hw_systick_init();
/* Pin driver initialization is open by default */
#ifdef RT_USING_PIN
extern int rt_hw_pin_init(void);
rt_hw_pin_init();
#endif
/* USART driver initialization is open by default */
#ifdef RT_USING_SERIAL
extern int rt_hw_usart_init(void);
rt_hw_usart_init();
#endif
}

667
drivers/drv_eth.c Normal file
View File

@ -0,0 +1,667 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-19 SummerGift first version
* 2018-12-25 zylx fix some bugs
* 2019-06-10 SummerGift optimize PHY state detection process
* 2019-09-03 xiaofan optimize link change detection process
*/
#include<rtthread.h>
#include<rtdevice.h>
#include "board.h"
#include "drv_config.h"
#ifdef BSP_USING_ETH
#include <netif/ethernetif.h>
#include "lwipopts.h"
#include "drv_eth.h"
/*
* Emac driver uses CubeMX tool to generate emac and phy's configuration,
* the configuration files can be found in CubeMX_Config folder.
*/
/* debug option */
//#define ETH_RX_DUMP
//#define ETH_TX_DUMP
//#define DRV_DEBUG
#define LOG_TAG "drv.emac"
#include <drv_log.h>
#define MAX_ADDR_LEN 6
struct rt_stm32_eth
{
/* inherit from ethernet device */
struct eth_device parent;
#ifndef PHY_USING_INTERRUPT_MODE
rt_timer_t poll_link_timer;
#endif
/* interface address info, hw address */
rt_uint8_t dev_addr[MAX_ADDR_LEN];
/* ETH_Speed */
uint32_t ETH_Speed;
/* ETH_Duplex_Mode */
uint32_t ETH_Mode;
};
static ETH_DMADescTypeDef *DMARxDscrTab, *DMATxDscrTab;
static rt_uint8_t *Rx_Buff, *Tx_Buff;
static ETH_HandleTypeDef EthHandle;
static struct rt_stm32_eth stm32_eth_device;
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
{
unsigned char *buf = (unsigned char *)ptr;
int i, j;
for (i = 0; i < buflen; i += 16)
{
rt_kprintf("%08X: ", i);
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%02X ", buf[i + j]);
else
rt_kprintf(" ");
rt_kprintf(" ");
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
rt_kprintf("\n");
}
}
#endif
extern void phy_reset(void);
/* EMAC initialization function */
static rt_err_t rt_stm32_eth_init(rt_device_t dev)
{
__HAL_RCC_ETH_CLK_ENABLE();
phy_reset();
/* ETHERNET Configuration */
EthHandle.Instance = ETH;
EthHandle.Init.MACAddr = (rt_uint8_t *)&stm32_eth_device.dev_addr[0];
EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_DISABLE;
EthHandle.Init.Speed = ETH_SPEED_100M;
EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX;
EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
#ifdef RT_LWIP_USING_HW_CHECKSUM
EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE;
#else
EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
#endif
HAL_ETH_DeInit(&EthHandle);
/* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
if (HAL_ETH_Init(&EthHandle) != HAL_OK)
{
LOG_E("eth hardware init failed");
}
else
{
LOG_D("eth hardware init success");
}
/* Initialize Tx Descriptors list: Chain Mode */
HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, Tx_Buff, ETH_TXBUFNB);
/* Initialize Rx Descriptors list: Chain Mode */
HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, Rx_Buff, ETH_RXBUFNB);
/* ETH interrupt Init */
HAL_NVIC_SetPriority(ETH_IRQn, 0x07, 0);
HAL_NVIC_EnableIRQ(ETH_IRQn);
/* Enable MAC and DMA transmission and reception */
if (HAL_ETH_Start(&EthHandle) == HAL_OK)
{
LOG_D("emac hardware start");
}
else
{
LOG_E("emac hardware start faild");
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
LOG_D("emac open");
return RT_EOK;
}
static rt_err_t rt_stm32_eth_close(rt_device_t dev)
{
LOG_D("emac close");
return RT_EOK;
}
static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
LOG_D("emac read");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_stm32_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
LOG_D("emac write");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit data*/
rt_err_t rt_stm32_eth_tx(rt_device_t dev, struct pbuf *p)
{
rt_err_t ret = RT_ERROR;
HAL_StatusTypeDef state;
struct pbuf *q;
uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr);
__IO ETH_DMADescTypeDef *DmaTxDesc;
uint32_t framelength = 0;
uint32_t bufferoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t payloadoffset = 0;
DmaTxDesc = EthHandle.TxDesc;
bufferoffset = 0;
/* copy frame from pbufs to driver buffers */
for (q = p; q != NULL; q = q->next)
{
/* Is this buffer available? If not, goto error */
if ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
LOG_D("buffer not valid");
ret = ERR_USE;
goto error;
}
/* Get bytes in current lwIP buffer */
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of data to copy is bigger than Tx buffer size*/
while ((byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE)
{
/* Copy data to Tx buffer*/
memcpy((uint8_t *)((uint8_t *)buffer + bufferoffset), (uint8_t *)((uint8_t *)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset));
/* Point to next descriptor */
DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
/* Check if the buffer is available */
if ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
LOG_E("dma tx desc buffer is not valid");
ret = ERR_USE;
goto error;
}
buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy the remaining bytes */
memcpy((uint8_t *)((uint8_t *)buffer + bufferoffset), (uint8_t *)((uint8_t *)q->payload + payloadoffset), byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
framelength = framelength + byteslefttocopy;
}
#ifdef ETH_TX_DUMP
dump_hex(buffer, p->tot_len);
#endif
/* Prepare transmit descriptors to give to DMA */
/* TODO Optimize data send speed*/
LOG_D("transmit frame length :%d", framelength);
/* wait for unlocked */
while (EthHandle.Lock == HAL_LOCKED);
state = HAL_ETH_TransmitFrame(&EthHandle, framelength);
if (state != HAL_OK)
{
LOG_E("eth transmit frame faild: %d", state);
}
ret = ERR_OK;
error:
/* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
{
/* Clear TUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_TUS;
/* Resume DMA transmission*/
EthHandle.Instance->DMATPDR = 0;
}
return ret;
}
/* receive data*/
struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
{
struct pbuf *p = NULL;
struct pbuf *q = NULL;
HAL_StatusTypeDef state;
uint16_t len = 0;
uint8_t *buffer;
__IO ETH_DMADescTypeDef *dmarxdesc;
uint32_t bufferoffset = 0;
uint32_t payloadoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t i = 0;
/* Get received frame */
state = HAL_ETH_GetReceivedFrame_IT(&EthHandle);
if (state != HAL_OK)
{
LOG_D("receive frame faild");
return NULL;
}
/* Obtain the size of the packet and put it into the "len" variable. */
len = EthHandle.RxFrameInfos.length;
buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer;
LOG_D("receive frame len : %d", len);
if (len > 0)
{
/* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
}
#ifdef ETH_RX_DUMP
dump_hex(buffer, p->tot_len);
#endif
if (p != NULL)
{
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
bufferoffset = 0;
for (q = p; q != NULL; q = q->next)
{
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
while ((byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE)
{
/* Copy data to pbuf */
memcpy((uint8_t *)((uint8_t *)q->payload + payloadoffset), (uint8_t *)((uint8_t *)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
/* Point to next descriptor */
dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy remaining data in pbuf */
memcpy((uint8_t *)((uint8_t *)q->payload + payloadoffset), (uint8_t *)((uint8_t *)buffer + bufferoffset), byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
}
}
/* Release descriptors to DMA */
/* Point to first descriptor */
dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
for (i = 0; i < EthHandle.RxFrameInfos.SegCount; i++)
{
dmarxdesc->Status |= ETH_DMARXDESC_OWN;
dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
}
/* Clear Segment_Count */
EthHandle.RxFrameInfos.SegCount = 0;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
EthHandle.Instance->DMARPDR = 0;
}
return p;
}
/* interrupt service routine */
void ETH_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_ETH_IRQHandler(&EthHandle);
/* leave interrupt */
rt_interrupt_leave();
}
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
{
rt_err_t result;
result = eth_device_ready(&(stm32_eth_device.parent));
if (result != RT_EOK)
LOG_I("RxCpltCallback err = %d", result);
}
void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
{
LOG_E("eth err");
}
enum {
PHY_LINK = (1 << 0),
PHY_100M = (1 << 1),
PHY_FULL_DUPLEX = (1 << 2),
};
static void phy_linkchange()
{
static rt_uint8_t phy_speed = 0;
rt_uint8_t phy_speed_new = 0;
rt_uint32_t status;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_BASIC_STATUS_REG, (uint32_t *)&status);
LOG_D("phy basic status reg is 0x%X", status);
if (status & (PHY_AUTONEGO_COMPLETE_MASK | PHY_LINKED_STATUS_MASK))
{
rt_uint32_t SR = 0;
phy_speed_new |= PHY_LINK;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_Status_REG, (uint32_t *)&SR);
LOG_D("phy control status reg is 0x%X", SR);
if (PHY_Status_SPEED_100M(SR))
{
phy_speed_new |= PHY_100M;
}
if (PHY_Status_FULL_DUPLEX(SR))
{
phy_speed_new |= PHY_FULL_DUPLEX;
}
}
if (phy_speed != phy_speed_new)
{
phy_speed = phy_speed_new;
if (phy_speed & PHY_LINK)
{
LOG_D("link up");
if (phy_speed & PHY_100M)
{
LOG_D("100Mbps");
stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
}
else
{
stm32_eth_device.ETH_Speed = ETH_SPEED_10M;
LOG_D("10Mbps");
}
if (phy_speed & PHY_FULL_DUPLEX)
{
LOG_D("full-duplex");
stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
}
else
{
LOG_D("half-duplex");
stm32_eth_device.ETH_Mode = ETH_MODE_HALFDUPLEX;
}
/* send link up. */
eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE);
}
else
{
LOG_I("link down");
eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE);
}
}
}
#ifdef PHY_USING_INTERRUPT_MODE
static void eth_phy_isr(void *args)
{
rt_uint32_t status = 0;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_INTERRUPT_FLAG_REG, (uint32_t *)&status);
LOG_D("phy interrupt status reg is 0x%X", status);
phy_linkchange();
}
#endif /* PHY_USING_INTERRUPT_MODE */
static void phy_monitor_thread_entry(void *parameter)
{
uint8_t phy_addr = 0xFF;
uint8_t detected_count = 0;
while(phy_addr == 0xFF)
{
/* phy search */
rt_uint32_t i, temp;
for (i = 0; i <= 0x1F; i++)
{
EthHandle.Init.PhyAddress = i;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ID1_REG, (uint32_t *)&temp);
if (temp != 0xFFFF && temp != 0x00)
{
phy_addr = i;
break;
}
}
detected_count++;
rt_thread_mdelay(1000);
if (detected_count > 10)
{
LOG_E("No PHY device was detected, please check hardware!");
}
}
LOG_D("Found a phy, address:0x%02X", phy_addr);
/* RESET PHY */
LOG_D("RESET PHY!");
HAL_ETH_WritePHYRegister(&EthHandle, PHY_BASIC_CONTROL_REG, PHY_RESET_MASK);
rt_thread_mdelay(2000);
HAL_ETH_WritePHYRegister(&EthHandle, PHY_BASIC_CONTROL_REG, PHY_AUTO_NEGOTIATION_MASK);
phy_linkchange();
#ifdef PHY_USING_INTERRUPT_MODE
/* configuration intterrupt pin */
rt_pin_mode(PHY_INT_PIN, PIN_MODE_INPUT_PULLUP);
rt_pin_attach_irq(PHY_INT_PIN, PIN_IRQ_MODE_FALLING, eth_phy_isr, (void *)"callbackargs");
rt_pin_irq_enable(PHY_INT_PIN, PIN_IRQ_ENABLE);
/* enable phy interrupt */
HAL_ETH_WritePHYRegister(&EthHandle, PHY_INTERRUPT_MASK_REG, PHY_INT_MASK);
#if defined(PHY_INTERRUPT_CTRL_REG)
HAL_ETH_WritePHYRegister(&EthHandle, PHY_INTERRUPT_CTRL_REG, PHY_INTERRUPT_EN);
#endif
#else /* PHY_USING_INTERRUPT_MODE */
stm32_eth_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange,
NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
if (!stm32_eth_device.poll_link_timer || rt_timer_start(stm32_eth_device.poll_link_timer) != RT_EOK)
{
LOG_E("Start link change detection timer failed");
}
#endif /* PHY_USING_INTERRUPT_MODE */
}
/* Register the EMAC device */
static int rt_hw_stm32_eth_init(void)
{
rt_err_t state = RT_EOK;
/* Prepare receive and send buffers */
Rx_Buff = (rt_uint8_t *)rt_calloc(ETH_RXBUFNB, ETH_MAX_PACKET_SIZE);
if (Rx_Buff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
Tx_Buff = (rt_uint8_t *)rt_calloc(ETH_TXBUFNB, ETH_MAX_PACKET_SIZE);
if (Tx_Buff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
DMARxDscrTab = (ETH_DMADescTypeDef *)rt_calloc(ETH_RXBUFNB, sizeof(ETH_DMADescTypeDef));
if (DMARxDscrTab == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
DMATxDscrTab = (ETH_DMADescTypeDef *)rt_calloc(ETH_TXBUFNB, sizeof(ETH_DMADescTypeDef));
if (DMATxDscrTab == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
/* OUI 00-80-E1 STMICROELECTRONICS. */
stm32_eth_device.dev_addr[0] = 0x00;
stm32_eth_device.dev_addr[1] = 0x80;
stm32_eth_device.dev_addr[2] = 0xE1;
/* generate MAC addr from 96bit unique ID (only for test). */
stm32_eth_device.dev_addr[3] = *(rt_uint8_t *)(UID_BASE + 4);
stm32_eth_device.dev_addr[4] = *(rt_uint8_t *)(UID_BASE + 2);
stm32_eth_device.dev_addr[5] = *(rt_uint8_t *)(UID_BASE + 0);
stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
stm32_eth_device.parent.parent.user_data = RT_NULL;
stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
/* register eth device */
state = eth_device_init(&(stm32_eth_device.parent), "e0");
if (RT_EOK == state)
{
LOG_D("emac device init success");
}
else
{
LOG_E("emac device init faild: %d", state);
state = -RT_ERROR;
goto __exit;
}
/* start phy monitor */
rt_thread_t tid;
tid = rt_thread_create("phy",
phy_monitor_thread_entry,
RT_NULL,
1024,
RT_THREAD_PRIORITY_MAX - 2,
2);
if (tid != RT_NULL)
{
rt_thread_startup(tid);
}
else
{
state = -RT_ERROR;
}
__exit:
if (state != RT_EOK)
{
if (Rx_Buff)
{
rt_free(Rx_Buff);
}
if (Tx_Buff)
{
rt_free(Tx_Buff);
}
if (DMARxDscrTab)
{
rt_free(DMARxDscrTab);
}
if (DMATxDscrTab)
{
rt_free(DMATxDscrTab);
}
}
return state;
}
INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init);
#endif /* BSP_USING_ETH */

810
drivers/drv_gpio.c Normal file
View File

@ -0,0 +1,810 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-06 balanceTWK first version
* 2019-04-23 WillianChan Fix GPIO serial number disorder
*/
#include "board.h"
#include "drv_common.h"
#ifdef RT_USING_PIN
#include <rtdevice.h>
#define __STM32_PIN(index, gpio, gpio_index) \
{ \
index, GPIO##gpio, GPIO_PIN_##gpio_index \
}
#define __STM32_PIN_RESERVE \
{ \
-1, 0, 0 \
}
/* STM32 GPIO driver */
struct pin_index
{
int index;
GPIO_TypeDef *gpio;
uint32_t pin;
};
struct pin_irq_map
{
rt_uint16_t pinbit;
IRQn_Type irqno;
};
static const struct pin_index pins[] =
{
#if defined(GPIOA)
__STM32_PIN(0 , A, 0 ),
__STM32_PIN(1 , A, 1 ),
__STM32_PIN(2 , A, 2 ),
__STM32_PIN(3 , A, 3 ),
__STM32_PIN(4 , A, 4 ),
__STM32_PIN(5 , A, 5 ),
__STM32_PIN(6 , A, 6 ),
__STM32_PIN(7 , A, 7 ),
__STM32_PIN(8 , A, 8 ),
__STM32_PIN(9 , A, 9 ),
__STM32_PIN(10, A, 10),
__STM32_PIN(11, A, 11),
__STM32_PIN(12, A, 12),
__STM32_PIN(13, A, 13),
__STM32_PIN(14, A, 14),
__STM32_PIN(15, A, 15),
#if defined(GPIOB)
__STM32_PIN(16, B, 0),
__STM32_PIN(17, B, 1),
__STM32_PIN(18, B, 2),
__STM32_PIN(19, B, 3),
__STM32_PIN(20, B, 4),
__STM32_PIN(21, B, 5),
__STM32_PIN(22, B, 6),
__STM32_PIN(23, B, 7),
__STM32_PIN(24, B, 8),
__STM32_PIN(25, B, 9),
__STM32_PIN(26, B, 10),
__STM32_PIN(27, B, 11),
__STM32_PIN(28, B, 12),
__STM32_PIN(29, B, 13),
__STM32_PIN(30, B, 14),
__STM32_PIN(31, B, 15),
#if defined(GPIOC)
__STM32_PIN(32, C, 0),
__STM32_PIN(33, C, 1),
__STM32_PIN(34, C, 2),
__STM32_PIN(35, C, 3),
__STM32_PIN(36, C, 4),
__STM32_PIN(37, C, 5),
__STM32_PIN(38, C, 6),
__STM32_PIN(39, C, 7),
__STM32_PIN(40, C, 8),
__STM32_PIN(41, C, 9),
__STM32_PIN(42, C, 10),
__STM32_PIN(43, C, 11),
__STM32_PIN(44, C, 12),
__STM32_PIN(45, C, 13),
__STM32_PIN(46, C, 14),
__STM32_PIN(47, C, 15),
#if defined(GPIOD)
__STM32_PIN(48, D, 0),
__STM32_PIN(49, D, 1),
__STM32_PIN(50, D, 2),
__STM32_PIN(51, D, 3),
__STM32_PIN(52, D, 4),
__STM32_PIN(53, D, 5),
__STM32_PIN(54, D, 6),
__STM32_PIN(55, D, 7),
__STM32_PIN(56, D, 8),
__STM32_PIN(57, D, 9),
__STM32_PIN(58, D, 10),
__STM32_PIN(59, D, 11),
__STM32_PIN(60, D, 12),
__STM32_PIN(61, D, 13),
__STM32_PIN(62, D, 14),
__STM32_PIN(63, D, 15),
#if defined(GPIOE)
__STM32_PIN(64, E, 0),
__STM32_PIN(65, E, 1),
__STM32_PIN(66, E, 2),
__STM32_PIN(67, E, 3),
__STM32_PIN(68, E, 4),
__STM32_PIN(69, E, 5),
__STM32_PIN(70, E, 6),
__STM32_PIN(71, E, 7),
__STM32_PIN(72, E, 8),
__STM32_PIN(73, E, 9),
__STM32_PIN(74, E, 10),
__STM32_PIN(75, E, 11),
__STM32_PIN(76, E, 12),
__STM32_PIN(77, E, 13),
__STM32_PIN(78, E, 14),
__STM32_PIN(79, E, 15),
#if defined(GPIOF)
__STM32_PIN(80, F, 0),
__STM32_PIN(81, F, 1),
__STM32_PIN(82, F, 2),
__STM32_PIN(83, F, 3),
__STM32_PIN(84, F, 4),
__STM32_PIN(85, F, 5),
__STM32_PIN(86, F, 6),
__STM32_PIN(87, F, 7),
__STM32_PIN(88, F, 8),
__STM32_PIN(89, F, 9),
__STM32_PIN(90, F, 10),
__STM32_PIN(91, F, 11),
__STM32_PIN(92, F, 12),
__STM32_PIN(93, F, 13),
__STM32_PIN(94, F, 14),
__STM32_PIN(95, F, 15),
#if defined(GPIOG)
__STM32_PIN(96, G, 0),
__STM32_PIN(97, G, 1),
__STM32_PIN(98, G, 2),
__STM32_PIN(99, G, 3),
__STM32_PIN(100, G, 4),
__STM32_PIN(101, G, 5),
__STM32_PIN(102, G, 6),
__STM32_PIN(103, G, 7),
__STM32_PIN(104, G, 8),
__STM32_PIN(105, G, 9),
__STM32_PIN(106, G, 10),
__STM32_PIN(107, G, 11),
__STM32_PIN(108, G, 12),
__STM32_PIN(109, G, 13),
__STM32_PIN(110, G, 14),
__STM32_PIN(111, G, 15),
#if defined(GPIOH)
__STM32_PIN(112, H, 0),
__STM32_PIN(113, H, 1),
__STM32_PIN(114, H, 2),
__STM32_PIN(115, H, 3),
__STM32_PIN(116, H, 4),
__STM32_PIN(117, H, 5),
__STM32_PIN(118, H, 6),
__STM32_PIN(119, H, 7),
__STM32_PIN(120, H, 8),
__STM32_PIN(121, H, 9),
__STM32_PIN(122, H, 10),
__STM32_PIN(123, H, 11),
__STM32_PIN(124, H, 12),
__STM32_PIN(125, H, 13),
__STM32_PIN(126, H, 14),
__STM32_PIN(127, H, 15),
#if defined(GPIOI)
__STM32_PIN(128, I, 0),
__STM32_PIN(129, I, 1),
__STM32_PIN(130, I, 2),
__STM32_PIN(131, I, 3),
__STM32_PIN(132, I, 4),
__STM32_PIN(133, I, 5),
__STM32_PIN(134, I, 6),
__STM32_PIN(135, I, 7),
__STM32_PIN(136, I, 8),
__STM32_PIN(137, I, 9),
__STM32_PIN(138, I, 10),
__STM32_PIN(139, I, 11),
__STM32_PIN(140, I, 12),
__STM32_PIN(141, I, 13),
__STM32_PIN(142, I, 14),
__STM32_PIN(143, I, 15),
#if defined(GPIOJ)
__STM32_PIN(144, J, 0),
__STM32_PIN(145, J, 1),
__STM32_PIN(146, J, 2),
__STM32_PIN(147, J, 3),
__STM32_PIN(148, J, 4),
__STM32_PIN(149, J, 5),
__STM32_PIN(150, J, 6),
__STM32_PIN(151, J, 7),
__STM32_PIN(152, J, 8),
__STM32_PIN(153, J, 9),
__STM32_PIN(154, J, 10),
__STM32_PIN(155, J, 11),
__STM32_PIN(156, J, 12),
__STM32_PIN(157, J, 13),
__STM32_PIN(158, J, 14),
__STM32_PIN(159, J, 15),
#if defined(GPIOK)
__STM32_PIN(160, K, 0),
__STM32_PIN(161, K, 1),
__STM32_PIN(162, K, 2),
__STM32_PIN(163, K, 3),
__STM32_PIN(164, K, 4),
__STM32_PIN(165, K, 5),
__STM32_PIN(166, K, 6),
__STM32_PIN(167, K, 7),
__STM32_PIN(168, K, 8),
__STM32_PIN(169, K, 9),
__STM32_PIN(170, K, 10),
__STM32_PIN(171, K, 11),
__STM32_PIN(172, K, 12),
__STM32_PIN(173, K, 13),
__STM32_PIN(174, K, 14),
__STM32_PIN(175, K, 15),
#endif /* defined(GPIOK) */
#endif /* defined(GPIOJ) */
#endif /* defined(GPIOI) */
#endif /* defined(GPIOH) */
#endif /* defined(GPIOG) */
#endif /* defined(GPIOF) */
#endif /* defined(GPIOE) */
#endif /* defined(GPIOD) */
#endif /* defined(GPIOC) */
#endif /* defined(GPIOB) */
#endif /* defined(GPIOA) */
};
static const struct pin_irq_map pin_irq_map[] =
{
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0)
{GPIO_PIN_0, EXTI0_1_IRQn},
{GPIO_PIN_1, EXTI0_1_IRQn},
{GPIO_PIN_2, EXTI2_3_IRQn},
{GPIO_PIN_3, EXTI2_3_IRQn},
{GPIO_PIN_4, EXTI4_15_IRQn},
{GPIO_PIN_5, EXTI4_15_IRQn},
{GPIO_PIN_6, EXTI4_15_IRQn},
{GPIO_PIN_7, EXTI4_15_IRQn},
{GPIO_PIN_8, EXTI4_15_IRQn},
{GPIO_PIN_9, EXTI4_15_IRQn},
{GPIO_PIN_10, EXTI4_15_IRQn},
{GPIO_PIN_11, EXTI4_15_IRQn},
{GPIO_PIN_12, EXTI4_15_IRQn},
{GPIO_PIN_13, EXTI4_15_IRQn},
{GPIO_PIN_14, EXTI4_15_IRQn},
{GPIO_PIN_15, EXTI4_15_IRQn},
#else
{GPIO_PIN_0, EXTI0_IRQn},
{GPIO_PIN_1, EXTI1_IRQn},
{GPIO_PIN_2, EXTI2_IRQn},
{GPIO_PIN_3, EXTI3_IRQn},
{GPIO_PIN_4, EXTI4_IRQn},
{GPIO_PIN_5, EXTI9_5_IRQn},
{GPIO_PIN_6, EXTI9_5_IRQn},
{GPIO_PIN_7, EXTI9_5_IRQn},
{GPIO_PIN_8, EXTI9_5_IRQn},
{GPIO_PIN_9, EXTI9_5_IRQn},
{GPIO_PIN_10, EXTI15_10_IRQn},
{GPIO_PIN_11, EXTI15_10_IRQn},
{GPIO_PIN_12, EXTI15_10_IRQn},
{GPIO_PIN_13, EXTI15_10_IRQn},
{GPIO_PIN_14, EXTI15_10_IRQn},
{GPIO_PIN_15, EXTI15_10_IRQn},
#endif
};
static struct rt_pin_irq_hdr pin_irq_hdr_tab[] =
{
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
{-1, 0, RT_NULL, RT_NULL},
};
static uint32_t pin_irq_enable_mask=0;
#define ITEM_NUM(items) sizeof(items) / sizeof(items[0])
static const struct pin_index *get_pin(uint8_t pin)
{
const struct pin_index *index;
if (pin < ITEM_NUM(pins))
{
index = &pins[pin];
if (index->index == -1)
index = RT_NULL;
}
else
{
index = RT_NULL;
}
return index;
};
static void stm32_pin_write(struct rt_device *device, rt_base_t pin, rt_uint8_t value)
{
const struct pin_index *index;
index = get_pin(pin);
if (index == RT_NULL)
{
return;
}
HAL_GPIO_WritePin(index->gpio, index->pin, (GPIO_PinState)value);
}
static int stm32_pin_read(rt_device_t dev, rt_base_t pin)
{
int value;
const struct pin_index *index;
value = PIN_LOW;
index = get_pin(pin);
if (index == RT_NULL)
{
return value;
}
value = HAL_GPIO_ReadPin(index->gpio, index->pin);
return value;
}
static void stm32_pin_mode(struct rt_device *device, rt_base_t pin, rt_uint8_t mode)
{
const struct pin_index *index;
GPIO_InitTypeDef GPIO_InitStruct;
index = get_pin(pin);
if (index == RT_NULL)
{
return;
}
/* Configure GPIO_InitStructure */
GPIO_InitStruct.Pin = index->pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
if (mode == PIN_MODE_OUTPUT)
{
/* output setting */
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
}
else if (mode == PIN_MODE_INPUT)
{
/* input setting: not pull. */
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
}
else if (mode == PIN_MODE_INPUT_PULLUP)
{
/* input setting: pull up. */
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
}
else if (mode == PIN_MODE_INPUT_PULLDOWN)
{
/* input setting: pull down. */
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
}
else if (mode == PIN_MODE_OUTPUT_OD)
{
/* output setting: od. */
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
}
HAL_GPIO_Init(index->gpio, &GPIO_InitStruct);
}
rt_inline rt_int32_t bit2bitno(rt_uint32_t bit)
{
int i;
for (i = 0; i < 32; i++)
{
if ((0x01 << i) == bit)
{
return i;
}
}
return -1;
}
rt_inline const struct pin_irq_map *get_pin_irq_map(uint32_t pinbit)
{
rt_int32_t mapindex = bit2bitno(pinbit);
if (mapindex < 0 || mapindex >= ITEM_NUM(pin_irq_map))
{
return RT_NULL;
}
return &pin_irq_map[mapindex];
};
static rt_err_t stm32_pin_attach_irq(struct rt_device *device, rt_base_t pin,
rt_uint8_t mode, void (*hdr)(void *args), void *args)
{
const struct pin_index *index;
rt_base_t level;
rt_int32_t irqindex = -1;
index = get_pin(pin);
if (index == RT_NULL)
{
return RT_ENOSYS;
}
irqindex = bit2bitno(index->pin);
if (irqindex < 0 || irqindex >= ITEM_NUM(pin_irq_map))
{
return RT_ENOSYS;
}
level = rt_hw_interrupt_disable();
if (pin_irq_hdr_tab[irqindex].pin == pin &&
pin_irq_hdr_tab[irqindex].hdr == hdr &&
pin_irq_hdr_tab[irqindex].mode == mode &&
pin_irq_hdr_tab[irqindex].args == args)
{
rt_hw_interrupt_enable(level);
return RT_EOK;
}
if (pin_irq_hdr_tab[irqindex].pin != -1)
{
rt_hw_interrupt_enable(level);
return RT_EBUSY;
}
pin_irq_hdr_tab[irqindex].pin = pin;
pin_irq_hdr_tab[irqindex].hdr = hdr;
pin_irq_hdr_tab[irqindex].mode = mode;
pin_irq_hdr_tab[irqindex].args = args;
rt_hw_interrupt_enable(level);
return RT_EOK;
}
static rt_err_t stm32_pin_dettach_irq(struct rt_device *device, rt_int32_t pin)
{
const struct pin_index *index;
rt_base_t level;
rt_int32_t irqindex = -1;
index = get_pin(pin);
if (index == RT_NULL)
{
return RT_ENOSYS;
}
irqindex = bit2bitno(index->pin);
if (irqindex < 0 || irqindex >= ITEM_NUM(pin_irq_map))
{
return RT_ENOSYS;
}
level = rt_hw_interrupt_disable();
if (pin_irq_hdr_tab[irqindex].pin == -1)
{
rt_hw_interrupt_enable(level);
return RT_EOK;
}
pin_irq_hdr_tab[irqindex].pin = -1;
pin_irq_hdr_tab[irqindex].hdr = RT_NULL;
pin_irq_hdr_tab[irqindex].mode = 0;
pin_irq_hdr_tab[irqindex].args = RT_NULL;
rt_hw_interrupt_enable(level);
return RT_EOK;
}
static rt_err_t stm32_pin_irq_enable(struct rt_device *device, rt_base_t pin, rt_uint8_t enabled)
{
const struct pin_index *index;
const struct pin_irq_map *irqmap;
rt_base_t level;
rt_int32_t irqindex = -1;
GPIO_InitTypeDef GPIO_InitStruct;
index = get_pin(pin);
if (index == RT_NULL)
{
return RT_ENOSYS;
}
if (enabled == PIN_IRQ_ENABLE)
{
irqindex = bit2bitno(index->pin);
if (irqindex < 0 || irqindex >= ITEM_NUM(pin_irq_map))
{
return RT_ENOSYS;
}
level = rt_hw_interrupt_disable();
if (pin_irq_hdr_tab[irqindex].pin == -1)
{
rt_hw_interrupt_enable(level);
return RT_ENOSYS;
}
irqmap = &pin_irq_map[irqindex];
/* Configure GPIO_InitStructure */
GPIO_InitStruct.Pin = index->pin;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
switch (pin_irq_hdr_tab[irqindex].mode)
{
case PIN_IRQ_MODE_RISING:
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
break;
case PIN_IRQ_MODE_FALLING:
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
break;
case PIN_IRQ_MODE_RISING_FALLING:
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
break;
}
HAL_GPIO_Init(index->gpio, &GPIO_InitStruct);
HAL_NVIC_SetPriority(irqmap->irqno, 5, 0);
HAL_NVIC_EnableIRQ(irqmap->irqno);
pin_irq_enable_mask |= irqmap->pinbit;
rt_hw_interrupt_enable(level);
}
else if (enabled == PIN_IRQ_DISABLE)
{
irqmap = get_pin_irq_map(index->pin);
if (irqmap == RT_NULL)
{
return RT_ENOSYS;
}
level = rt_hw_interrupt_disable();
HAL_GPIO_DeInit(index->gpio, index->pin);
pin_irq_enable_mask &= ~irqmap->pinbit;
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
if (( irqmap->pinbit>=GPIO_PIN_0 )&&( irqmap->pinbit<=GPIO_PIN_1 ))
{
if(!(pin_irq_enable_mask&(GPIO_PIN_0|GPIO_PIN_1)))
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
}
else if (( irqmap->pinbit>=GPIO_PIN_2 )&&( irqmap->pinbit<=GPIO_PIN_3 ))
{
if(!(pin_irq_enable_mask&(GPIO_PIN_2|GPIO_PIN_3)))
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
}
else if (( irqmap->pinbit>=GPIO_PIN_4 )&&( irqmap->pinbit<=GPIO_PIN_15 ))
{
if(!(pin_irq_enable_mask&(GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|
GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15)))
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
}
else
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
#else
if (( irqmap->pinbit>=GPIO_PIN_5 )&&( irqmap->pinbit<=GPIO_PIN_9 ))
{
if(!(pin_irq_enable_mask&(GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9)))
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
}
else if (( irqmap->pinbit>=GPIO_PIN_10 )&&( irqmap->pinbit<=GPIO_PIN_15 ))
{
if(!(pin_irq_enable_mask&(GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15)))
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
}
else
{
HAL_NVIC_DisableIRQ(irqmap->irqno);
}
#endif
rt_hw_interrupt_enable(level);
}
else
{
return -RT_ENOSYS;
}
return RT_EOK;
}
const static struct rt_pin_ops _stm32_pin_ops =
{
stm32_pin_mode,
stm32_pin_write,
stm32_pin_read,
stm32_pin_attach_irq,
stm32_pin_dettach_irq,
stm32_pin_irq_enable,
};
rt_inline void pin_irq_hdr(int irqno)
{
if (pin_irq_hdr_tab[irqno].hdr)
{
pin_irq_hdr_tab[irqno].hdr(pin_irq_hdr_tab[irqno].args);
}
}
#if defined(SOC_SERIES_STM32G0)
void HAL_GPIO_EXTI_Rising_Callback(uint16_t GPIO_Pin)
{
pin_irq_hdr(bit2bitno(GPIO_Pin));
}
void HAL_GPIO_EXTI_Falling_Callback(uint16_t GPIO_Pin)
{
pin_irq_hdr(bit2bitno(GPIO_Pin));
}
#else
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
pin_irq_hdr(bit2bitno(GPIO_Pin));
}
#endif
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32L0)
void EXTI0_1_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
rt_interrupt_leave();
}
void EXTI2_3_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_3);
rt_interrupt_leave();
}
void EXTI4_15_IRQHandler(void)
{
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_4);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_5);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_6);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_7);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_8);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_10);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_11);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_12);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_13);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_14);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_15);
}
#else
void EXTI0_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
rt_interrupt_leave();
}
void EXTI1_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
rt_interrupt_leave();
}
void EXTI2_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
rt_interrupt_leave();
}
void EXTI3_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_3);
rt_interrupt_leave();
}
void EXTI4_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_4);
rt_interrupt_leave();
}
void EXTI9_5_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_5);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_6);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_7);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_8);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
rt_interrupt_leave();
}
void EXTI15_10_IRQHandler(void)
{
rt_interrupt_enter();
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_10);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_11);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_12);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_13);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_14);
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_15);
rt_interrupt_leave();
}
#endif
int rt_hw_pin_init(void)
{
#if defined(__HAL_RCC_GPIOA_CLK_ENABLE)
__HAL_RCC_GPIOA_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOB_CLK_ENABLE)
__HAL_RCC_GPIOB_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOC_CLK_ENABLE)
__HAL_RCC_GPIOC_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOD_CLK_ENABLE)
__HAL_RCC_GPIOD_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOE_CLK_ENABLE)
__HAL_RCC_GPIOE_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOF_CLK_ENABLE)
__HAL_RCC_GPIOF_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOG_CLK_ENABLE)
#ifdef SOC_SERIES_STM32L4
HAL_PWREx_EnableVddIO2();
#endif
__HAL_RCC_GPIOG_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOH_CLK_ENABLE)
__HAL_RCC_GPIOH_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOI_CLK_ENABLE)
__HAL_RCC_GPIOI_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOJ_CLK_ENABLE)
__HAL_RCC_GPIOJ_CLK_ENABLE();
#endif
#if defined(__HAL_RCC_GPIOK_CLK_ENABLE)
__HAL_RCC_GPIOK_CLK_ENABLE();
#endif
return rt_device_pin_register("pin", &_stm32_pin_ops, RT_NULL);
}
#endif /* RT_USING_PIN */

555
drivers/drv_hwtimer.c Normal file
View File

@ -0,0 +1,555 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-10 zylx first version
*/
#include <board.h>
#include<rtthread.h>
#include<rtdevice.h>
#ifdef BSP_USING_TIM
#include "drv_config.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.hwtimer"
#include <drv_log.h>
#ifdef RT_USING_HWTIMER
enum
{
#ifdef BSP_USING_TIM1
TIM1_INDEX,
#endif
#ifdef BSP_USING_TIM2
TIM2_INDEX,
#endif
#ifdef BSP_USING_TIM3
TIM3_INDEX,
#endif
#ifdef BSP_USING_TIM4
TIM4_INDEX,
#endif
#ifdef BSP_USING_TIM5
TIM5_INDEX,
#endif
#ifdef BSP_USING_TIM6
TIM6_INDEX,
#endif
#ifdef BSP_USING_TIM7
TIM7_INDEX,
#endif
#ifdef BSP_USING_TIM8
TIM8_INDEX,
#endif
#ifdef BSP_USING_TIM9
TIM9_INDEX,
#endif
#ifdef BSP_USING_TIM10
TIM10_INDEX,
#endif
#ifdef BSP_USING_TIM11
TIM11_INDEX,
#endif
#ifdef BSP_USING_TIM12
TIM12_INDEX,
#endif
#ifdef BSP_USING_TIM13
TIM13_INDEX,
#endif
#ifdef BSP_USING_TIM14
TIM14_INDEX,
#endif
#ifdef BSP_USING_TIM15
TIM15_INDEX,
#endif
#ifdef BSP_USING_TIM16
TIM16_INDEX,
#endif
#ifdef BSP_USING_TIM17
TIM17_INDEX,
#endif
};
struct stm32_hwtimer
{
rt_hwtimer_t time_device;
TIM_HandleTypeDef tim_handle;
IRQn_Type tim_irqn;
char *name;
};
static struct stm32_hwtimer stm32_hwtimer_obj[] =
{
#ifdef BSP_USING_TIM1
TIM1_CONFIG,
#endif
#ifdef BSP_USING_TIM2
TIM2_CONFIG,
#endif
#ifdef BSP_USING_TIM3
TIM3_CONFIG,
#endif
#ifdef BSP_USING_TIM4
TIM4_CONFIG,
#endif
#ifdef BSP_USING_TIM5
TIM5_CONFIG,
#endif
#ifdef BSP_USING_TIM6
TIM6_CONFIG,
#endif
#ifdef BSP_USING_TIM7
TIM7_CONFIG,
#endif
#ifdef BSP_USING_TIM8
TIM8_CONFIG,
#endif
#ifdef BSP_USING_TIM9
TIM9_CONFIG,
#endif
#ifdef BSP_USING_TIM10
TIM10_CONFIG,
#endif
#ifdef BSP_USING_TIM11
TIM11_CONFIG,
#endif
#ifdef BSP_USING_TIM12
TIM12_CONFIG,
#endif
#ifdef BSP_USING_TIM13
TIM13_CONFIG,
#endif
#ifdef BSP_USING_TIM14
TIM14_CONFIG,
#endif
#ifdef BSP_USING_TIM15
TIM15_CONFIG,
#endif
#ifdef BSP_USING_TIM16
TIM16_CONFIG,
#endif
#ifdef BSP_USING_TIM17
TIM17_CONFIG,
#endif
};
static void timer_init(struct rt_hwtimer_device *timer, rt_uint32_t state)
{
uint32_t prescaler_value = 0;
TIM_HandleTypeDef *tim = RT_NULL;
struct stm32_hwtimer *tim_device = RT_NULL;
RT_ASSERT(timer != RT_NULL);
if (state)
{
tim = (TIM_HandleTypeDef *)timer->parent.user_data;
tim_device = (struct stm32_hwtimer *)timer;
/* time init */
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
if (tim->Instance == TIM9 || tim->Instance == TIM10 || tim->Instance == TIM11)
#elif defined(SOC_SERIES_STM32L4)
if (tim->Instance == TIM15 || tim->Instance == TIM16 || tim->Instance == TIM17)
#elif defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
if (0)
#endif
{
#if !defined(SOC_SERIES_STM32F0) && !defined(SOC_SERIES_STM32G0)
prescaler_value = (uint32_t)(HAL_RCC_GetPCLK2Freq() * 2 / 10000) - 1;
#endif
}
else
{
prescaler_value = (uint32_t)(HAL_RCC_GetPCLK1Freq() * 2 / 10000) - 1;
}
tim->Init.Period = 10000 - 1;
tim->Init.Prescaler = prescaler_value;
tim->Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (timer->info->cntmode == HWTIMER_CNTMODE_UP)
{
tim->Init.CounterMode = TIM_COUNTERMODE_UP;
}
else
{
tim->Init.CounterMode = TIM_COUNTERMODE_DOWN;
}
tim->Init.RepetitionCounter = 0;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
tim->Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
#endif
if (HAL_TIM_Base_Init(tim) != HAL_OK)
{
LOG_E("%s init failed", tim_device->name);
return;
}
else
{
/* set the TIMx priority */
HAL_NVIC_SetPriority(tim_device->tim_irqn, 3, 0);
/* enable the TIMx global Interrupt */
HAL_NVIC_EnableIRQ(tim_device->tim_irqn);
/* clear update flag */
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
/* enable update request source */
__HAL_TIM_URS_ENABLE(tim);
LOG_D("%s init success", tim_device->name);
}
}
}
static rt_err_t timer_start(rt_hwtimer_t *timer, rt_uint32_t t, rt_hwtimer_mode_t opmode)
{
rt_err_t result = RT_EOK;
TIM_HandleTypeDef *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (TIM_HandleTypeDef *)timer->parent.user_data;
/* set tim cnt */
__HAL_TIM_SET_COUNTER(tim, 0);
/* set tim arr */
__HAL_TIM_SET_AUTORELOAD(tim, t - 1);
if (opmode == HWTIMER_MODE_ONESHOT)
{
/* set timer to single mode */
tim->Instance->CR1 |= TIM_OPMODE_SINGLE;
}
else
{
tim->Instance->CR1 &= (~TIM_OPMODE_SINGLE);
}
/* start timer */
if (HAL_TIM_Base_Start_IT(tim) != HAL_OK)
{
LOG_E("TIM start failed");
result = -RT_ERROR;
}
return result;
}
static void timer_stop(rt_hwtimer_t *timer)
{
TIM_HandleTypeDef *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (TIM_HandleTypeDef *)timer->parent.user_data;
/* stop timer */
HAL_TIM_Base_Stop_IT(tim);
/* set tim cnt */
__HAL_TIM_SET_COUNTER(tim, 0);
}
static rt_err_t timer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *arg)
{
TIM_HandleTypeDef *tim = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(arg != RT_NULL);
tim = (TIM_HandleTypeDef *)timer->parent.user_data;
switch (cmd)
{
case HWTIMER_CTRL_FREQ_SET:
{
rt_uint32_t freq;
rt_uint16_t val;
/* set timer frequence */
freq = *((rt_uint32_t *)arg);
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
if (tim->Instance == TIM9 || tim->Instance == TIM10 || tim->Instance == TIM11)
#elif defined(SOC_SERIES_STM32L4)
if (tim->Instance == TIM15 || tim->Instance == TIM16 || tim->Instance == TIM17)
#elif defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
if (0)
#endif
{
#if defined(SOC_SERIES_STM32L4)
val = HAL_RCC_GetPCLK2Freq() / freq;
#elif defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
val = HAL_RCC_GetPCLK2Freq() * 2 / freq;
#endif
}
else
{
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
val = HAL_RCC_GetPCLK1Freq() * 2 / freq;
#elif defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
val = HAL_RCC_GetPCLK1Freq() / freq;
#endif
}
__HAL_TIM_SET_PRESCALER(tim, val - 1);
/* Update frequency value */
tim->Instance->EGR |= TIM_EVENTSOURCE_UPDATE;
}
break;
default:
{
result = -RT_ENOSYS;
}
break;
}
return result;
}
static rt_uint32_t timer_counter_get(rt_hwtimer_t *timer)
{
TIM_HandleTypeDef *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (TIM_HandleTypeDef *)timer->parent.user_data;
return tim->Instance->CNT;
}
static const struct rt_hwtimer_info _info = TIM_DEV_INFO_CONFIG;
static const struct rt_hwtimer_ops _ops =
{
.init = timer_init,
.start = timer_start,
.stop = timer_stop,
.count_get = timer_counter_get,
.control = timer_ctrl,
};
#ifdef BSP_USING_TIM2
void TIM2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM2_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM3
void TIM3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM3_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM4
void TIM4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM4_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM5
void TIM5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM5_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM11
void TIM1_TRG_COM_TIM11_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM11_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM13
void TIM8_UP_TIM13_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM13_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM14
#if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
void TIM8_TRG_COM_TIM14_IRQHandler(void)
#elif defined(SOC_SERIES_STM32F0)
void TIM14_IRQHandler(void)
#endif
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM14_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM15
void TIM1_BRK_TIM15_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM15_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM16
#if defined(SOC_SERIES_STM32L4)
void TIM1_UP_TIM16_IRQHandler(void)
#elif defined(SOC_SERIES_STM32F0)
void TIM16_IRQHandler(void)
#endif
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM16_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIM17
#if defined(SOC_SERIES_STM32L4)
void TIM1_TRG_COM_TIM17_IRQHandler(void)
#elif defined(SOC_SERIES_STM32F0)
void TIM17_IRQHandler(void)
#endif
{
/* enter interrupt */
rt_interrupt_enter();
HAL_TIM_IRQHandler(&stm32_hwtimer_obj[TIM17_INDEX].tim_handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
#ifdef BSP_USING_TIM2
if (htim->Instance == TIM2)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM2_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM3
if (htim->Instance == TIM3)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM3_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM4
if (htim->Instance == TIM4)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM4_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM5
if (htim->Instance == TIM5)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM5_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM11
if (htim->Instance == TIM11)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM11_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM13
if (htim->Instance == TIM13)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM13_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM14
if (htim->Instance == TIM14)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM14_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM15
if (htim->Instance == TIM15)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM15_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM16
if (htim->Instance == TIM16)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM16_INDEX].time_device);
}
#endif
#ifdef BSP_USING_TIM17
if (htim->Instance == TIM17)
{
rt_device_hwtimer_isr(&stm32_hwtimer_obj[TIM17_INDEX].time_device);
}
#endif
}
static int stm32_hwtimer_init(void)
{
int i = 0;
int result = RT_EOK;
for (i = 0; i < sizeof(stm32_hwtimer_obj) / sizeof(stm32_hwtimer_obj[0]); i++)
{
stm32_hwtimer_obj[i].time_device.info = &_info;
stm32_hwtimer_obj[i].time_device.ops = &_ops;
if (rt_device_hwtimer_register(&stm32_hwtimer_obj[i].time_device, stm32_hwtimer_obj[i].name, &stm32_hwtimer_obj[i].tim_handle) == RT_EOK)
{
LOG_D("%s register success", stm32_hwtimer_obj[i].name);
}
else
{
LOG_E("%s register failed", stm32_hwtimer_obj[i].name);
result = -RT_ERROR;
}
}
return result;
}
INIT_BOARD_EXPORT(stm32_hwtimer_init);
#endif /* RT_USING_HWTIMER */
#endif /* BSP_USING_TIM */

566
drivers/drv_pwm.c Normal file
View File

@ -0,0 +1,566 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-13 zylx first version
*/
#include <board.h>
#include<rtthread.h>
#include<rtdevice.h>
#ifdef RT_USING_PWM
#include "drv_config.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.pwm"
#include <drv_log.h>
#define MAX_PERIOD 65535
#define MIN_PERIOD 3
#define MIN_PULSE 2
extern void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
enum
{
#ifdef BSP_USING_PWM1
PWM1_INDEX,
#endif
#ifdef BSP_USING_PWM2
PWM2_INDEX,
#endif
#ifdef BSP_USING_PWM3
PWM3_INDEX,
#endif
#ifdef BSP_USING_PWM4
PWM4_INDEX,
#endif
#ifdef BSP_USING_PWM5
PWM5_INDEX,
#endif
#ifdef BSP_USING_PWM6
PWM6_INDEX,
#endif
#ifdef BSP_USING_PWM7
PWM7_INDEX,
#endif
#ifdef BSP_USING_PWM8
PWM8_INDEX,
#endif
#ifdef BSP_USING_PWM9
PWM9_INDEX,
#endif
#ifdef BSP_USING_PWM10
PWM10_INDEX,
#endif
#ifdef BSP_USING_PWM11
PWM11_INDEX,
#endif
#ifdef BSP_USING_PWM12
PWM12_INDEX,
#endif
#ifdef BSP_USING_PWM13
PWM13_INDEX,
#endif
#ifdef BSP_USING_PWM14
PWM14_INDEX,
#endif
#ifdef BSP_USING_PWM15
PWM15_INDEX,
#endif
#ifdef BSP_USING_PWM16
PWM16_INDEX,
#endif
#ifdef BSP_USING_PWM17
PWM17_INDEX,
#endif
};
struct stm32_pwm
{
struct rt_device_pwm pwm_device;
TIM_HandleTypeDef tim_handle;
rt_uint8_t channel;
char *name;
};
static struct stm32_pwm stm32_pwm_obj[] =
{
#ifdef BSP_USING_PWM1
PWM1_CONFIG,
#endif
#ifdef BSP_USING_PWM2
PWM2_CONFIG,
#endif
#ifdef BSP_USING_PWM3
PWM3_CONFIG,
#endif
#ifdef BSP_USING_PWM4
PWM4_CONFIG,
#endif
#ifdef BSP_USING_PWM5
PWM5_CONFIG,
#endif
#ifdef BSP_USING_PWM6
PWM6_CONFIG,
#endif
#ifdef BSP_USING_PWM7
PWM7_CONFIG,
#endif
#ifdef BSP_USING_PWM8
PWM8_CONFIG,
#endif
#ifdef BSP_USING_PWM9
PWM9_CONFIG,
#endif
#ifdef BSP_USING_PWM10
PWM10_CONFIG,
#endif
#ifdef BSP_USING_PWM11
PWM11_CONFIG,
#endif
#ifdef BSP_USING_PWM12
PWM12_CONFIG,
#endif
#ifdef BSP_USING_PWM13
PWM13_CONFIG,
#endif
#ifdef BSP_USING_PWM14
PWM14_CONFIG,
#endif
#ifdef BSP_USING_PWM15
PWM15_CONFIG,
#endif
#ifdef BSP_USING_PWM16
PWM16_CONFIG,
#endif
#ifdef BSP_USING_PWM17
PWM17_CONFIG,
#endif
};
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
static struct rt_pwm_ops drv_ops =
{
drv_pwm_control
};
static rt_err_t drv_pwm_enable(TIM_HandleTypeDef *htim, struct rt_pwm_configuration *configuration, rt_bool_t enable)
{
/* Converts the channel number to the channel number of Hal library */
rt_uint32_t channel = 0x04 * (configuration->channel - 1);
if (!enable)
{
HAL_TIM_PWM_Stop(htim, channel);
}
else
{
HAL_TIM_PWM_Start(htim, channel);
}
return RT_EOK;
}
static rt_err_t drv_pwm_get(TIM_HandleTypeDef *htim, struct rt_pwm_configuration *configuration)
{
/* Converts the channel number to the channel number of Hal library */
rt_uint32_t channel = 0x04 * (configuration->channel - 1);
rt_uint64_t tim_clock;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
if (htim->Instance == TIM9 || htim->Instance == TIM10 || htim->Instance == TIM11)
#elif defined(SOC_SERIES_STM32L4)
if (htim->Instance == TIM15 || htim->Instance == TIM16 || htim->Instance == TIM17)
#elif defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
if (0)
#endif
{
#if !defined(SOC_SERIES_STM32F0) && !defined(SOC_SERIES_STM32G0)
tim_clock = HAL_RCC_GetPCLK2Freq() * 2;
#endif
}
else
{
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
tim_clock = HAL_RCC_GetPCLK1Freq();
#else
tim_clock = HAL_RCC_GetPCLK1Freq() * 2;
#endif
}
if (__HAL_TIM_GET_CLOCKDIVISION(htim) == TIM_CLOCKDIVISION_DIV2)
{
tim_clock = tim_clock / 2;
}
else if (__HAL_TIM_GET_CLOCKDIVISION(htim) == TIM_CLOCKDIVISION_DIV4)
{
tim_clock = tim_clock / 4;
}
/* Convert nanosecond to frequency and duty cycle. 1s = 1 * 1000 * 1000 * 1000 ns */
tim_clock /= 1000000UL;
configuration->period = (__HAL_TIM_GET_AUTORELOAD(htim) + 1) * (htim->Instance->PSC + 1) * 1000UL / tim_clock;
configuration->pulse = (__HAL_TIM_GET_COMPARE(htim, channel) + 1) * (htim->Instance->PSC + 1) * 1000UL / tim_clock;
return RT_EOK;
}
static rt_err_t drv_pwm_set(TIM_HandleTypeDef *htim, struct rt_pwm_configuration *configuration)
{
rt_uint32_t period, pulse;
rt_uint64_t tim_clock, psc;
/* Converts the channel number to the channel number of Hal library */
rt_uint32_t channel = 0x04 * (configuration->channel - 1);
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
if (htim->Instance == TIM9 || htim->Instance == TIM10 || htim->Instance == TIM11)
#elif defined(SOC_SERIES_STM32L4)
if (htim->Instance == TIM15 || htim->Instance == TIM16 || htim->Instance == TIM17)
#elif defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
if (0)
#endif
{
#if !defined(SOC_SERIES_STM32F0) && !defined(SOC_SERIES_STM32G0)
tim_clock = HAL_RCC_GetPCLK2Freq() * 2;
#endif
}
else
{
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
tim_clock = HAL_RCC_GetPCLK1Freq();
#else
tim_clock = HAL_RCC_GetPCLK1Freq() * 2;
#endif
}
/* Convert nanosecond to frequency and duty cycle. 1s = 1 * 1000 * 1000 * 1000 ns */
tim_clock /= 1000000UL;
period = (unsigned long long)configuration->period * tim_clock / 1000ULL ;
psc = period / MAX_PERIOD + 1;
period = period / psc;
__HAL_TIM_SET_PRESCALER(htim, psc - 1);
if (period < MIN_PERIOD)
{
period = MIN_PERIOD;
}
__HAL_TIM_SET_AUTORELOAD(htim, period - 1);
pulse = (unsigned long long)configuration->pulse * tim_clock / psc / 1000ULL;
if (pulse < MIN_PULSE)
{
pulse = MIN_PULSE;
}
else if (pulse > period)
{
pulse = period;
}
__HAL_TIM_SET_COMPARE(htim, channel, pulse - 1);
__HAL_TIM_SET_COUNTER(htim, 0);
/* Update frequency value */
HAL_TIM_GenerateEvent(htim, TIM_EVENTSOURCE_UPDATE);
return RT_EOK;
}
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
{
struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)device->parent.user_data;
switch (cmd)
{
case PWM_CMD_ENABLE:
return drv_pwm_enable(htim, configuration, RT_TRUE);
case PWM_CMD_DISABLE:
return drv_pwm_enable(htim, configuration, RT_FALSE);
case PWM_CMD_SET:
return drv_pwm_set(htim, configuration);
case PWM_CMD_GET:
return drv_pwm_get(htim, configuration);
default:
return RT_EINVAL;
}
}
static rt_err_t stm32_hw_pwm_init(struct stm32_pwm *device)
{
rt_err_t result = RT_EOK;
TIM_HandleTypeDef *tim = RT_NULL;
TIM_OC_InitTypeDef oc_config = {0};
TIM_MasterConfigTypeDef master_config = {0};
TIM_ClockConfigTypeDef clock_config = {0};
RT_ASSERT(device != RT_NULL);
tim = (TIM_HandleTypeDef *)&device->tim_handle;
/* configure the timer to pwm mode */
tim->Init.Prescaler = 0;
tim->Init.CounterMode = TIM_COUNTERMODE_UP;
tim->Init.Period = 0;
tim->Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L4)
tim->Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
#endif
if (HAL_TIM_PWM_Init(tim) != HAL_OK)
{
LOG_E("%s pwm init failed", device->name);
result = -RT_ERROR;
goto __exit;
}
clock_config.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(tim, &clock_config) != HAL_OK)
{
LOG_E("%s clock init failed", device->name);
result = -RT_ERROR;
goto __exit;
}
master_config.MasterOutputTrigger = TIM_TRGO_RESET;
master_config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(tim, &master_config) != HAL_OK)
{
LOG_E("%s master config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
oc_config.OCMode = TIM_OCMODE_PWM1;
oc_config.Pulse = 0;
oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
oc_config.OCFastMode = TIM_OCFAST_DISABLE;
oc_config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
oc_config.OCIdleState = TIM_OCIDLESTATE_RESET;
/* config pwm channel */
if (device->channel & 0x01)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_1) != HAL_OK)
{
LOG_E("%s channel1 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
if (device->channel & 0x02)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_2) != HAL_OK)
{
LOG_E("%s channel2 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
if (device->channel & 0x04)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_3) != HAL_OK)
{
LOG_E("%s channel3 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
if (device->channel & 0x08)
{
if (HAL_TIM_PWM_ConfigChannel(tim, &oc_config, TIM_CHANNEL_4) != HAL_OK)
{
LOG_E("%s channel4 config failed", device->name);
result = -RT_ERROR;
goto __exit;
}
}
/* pwm pin configuration */
HAL_TIM_MspPostInit(tim);
/* enable update request source */
__HAL_TIM_URS_ENABLE(tim);
__exit:
return result;
}
static void pwm_get_channel(void)
{
#ifdef BSP_USING_PWM1_CH1
stm32_pwm_obj[PWM1_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM1_CH2
stm32_pwm_obj[PWM1_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM1_CH3
stm32_pwm_obj[PWM1_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM1_CH4
stm32_pwm_obj[PWM1_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM2_CH1
stm32_pwm_obj[PWM2_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM2_CH2
stm32_pwm_obj[PWM2_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM2_CH3
stm32_pwm_obj[PWM2_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM2_CH4
stm32_pwm_obj[PWM2_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM3_CH1
stm32_pwm_obj[PWM3_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM3_CH2
stm32_pwm_obj[PWM3_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM3_CH3
stm32_pwm_obj[PWM3_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM3_CH4
stm32_pwm_obj[PWM3_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM4_CH1
stm32_pwm_obj[PWM4_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM4_CH2
stm32_pwm_obj[PWM4_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM4_CH3
stm32_pwm_obj[PWM4_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM4_CH4
stm32_pwm_obj[PWM4_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM5_CH1
stm32_pwm_obj[PWM5_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM5_CH2
stm32_pwm_obj[PWM5_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM5_CH3
stm32_pwm_obj[PWM5_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM5_CH4
stm32_pwm_obj[PWM5_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM6_CH1
stm32_pwm_obj[PWM6_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM6_CH2
stm32_pwm_obj[PWM6_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM6_CH3
stm32_pwm_obj[PWM6_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM6_CH4
stm32_pwm_obj[PWM6_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM7_CH1
stm32_pwm_obj[PWM7_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM7_CH2
stm32_pwm_obj[PWM7_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM7_CH3
stm32_pwm_obj[PWM7_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM7_CH4
stm32_pwm_obj[PWM7_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM8_CH1
stm32_pwm_obj[PWM8_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM8_CH2
stm32_pwm_obj[PWM8_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM8_CH3
stm32_pwm_obj[PWM8_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM8_CH4
stm32_pwm_obj[PWM8_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM9_CH1
stm32_pwm_obj[PWM9_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM9_CH2
stm32_pwm_obj[PWM9_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM9_CH3
stm32_pwm_obj[PWM9_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM9_CH4
stm32_pwm_obj[PWM9_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM12_CH1
stm32_pwm_obj[PWM12_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM12_CH2
stm32_pwm_obj[PWM12_INDEX].channel |= 1 << 1;
#endif
}
static int stm32_pwm_init(void)
{
int i = 0;
int result = RT_EOK;
pwm_get_channel();
for (i = 0; i < sizeof(stm32_pwm_obj) / sizeof(stm32_pwm_obj[0]); i++)
{
/* pwm init */
if (stm32_hw_pwm_init(&stm32_pwm_obj[i]) != RT_EOK)
{
LOG_E("%s init failed", stm32_pwm_obj[i].name);
result = -RT_ERROR;
goto __exit;
}
else
{
LOG_D("%s init success", stm32_pwm_obj[i].name);
/* register pwm device */
if (rt_device_pwm_register(&stm32_pwm_obj[i].pwm_device, stm32_pwm_obj[i].name, &drv_ops, &stm32_pwm_obj[i].tim_handle) == RT_EOK)
{
LOG_D("%s register success", stm32_pwm_obj[i].name);
}
else
{
LOG_E("%s register failed", stm32_pwm_obj[i].name);
result = -RT_ERROR;
}
}
}
__exit:
return result;
}
INIT_DEVICE_EXPORT(stm32_pwm_init);
#endif /* RT_USING_PWM */

398
drivers/drv_qspi.c Normal file
View File

@ -0,0 +1,398 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-27 zylx first version
*/
#include "board.h"
#include<rtthread.h>
#include<rtdevice.h>
#include "drv_qspi.h"
#include "drv_config.h"
#ifdef RT_USING_QSPI
#define DRV_DEBUG
#define LOG_TAG "drv.qspi"
#include <drv_log.h>
#if defined(BSP_USING_QSPI)
struct stm32_hw_spi_cs
{
uint16_t Pin;
};
struct stm32_qspi_bus
{
QSPI_HandleTypeDef QSPI_Handler;
char *bus_name;
#ifdef BSP_QSPI_USING_DMA
DMA_HandleTypeDef hdma_quadspi;
#endif
};
struct rt_spi_bus _qspi_bus1;
struct stm32_qspi_bus _stm32_qspi_bus;
static int stm32_qspi_init(struct rt_qspi_device *device, struct rt_qspi_configuration *qspi_cfg)
{
int result = RT_EOK;
unsigned int i = 1;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(qspi_cfg != RT_NULL);
struct rt_spi_configuration *cfg = &qspi_cfg->parent;
struct stm32_qspi_bus *qspi_bus = device->parent.bus->parent.user_data;
rt_memset(&qspi_bus->QSPI_Handler, 0, sizeof(qspi_bus->QSPI_Handler));
QSPI_HandleTypeDef QSPI_Handler_config = QSPI_BUS_CONFIG;
qspi_bus->QSPI_Handler = QSPI_Handler_config;
while (cfg->max_hz < HAL_RCC_GetHCLKFreq() / (i + 1))
{
i++;
if (i == 255)
{
LOG_E("QSPI init failed, QSPI frequency(%d) is too low.", cfg->max_hz);
return -RT_ERROR;
}
}
/* 80/(1+i) */
qspi_bus->QSPI_Handler.Init.ClockPrescaler = i;
if (!(cfg->mode & RT_SPI_CPOL))
{
/* QSPI MODE0 */
qspi_bus->QSPI_Handler.Init.ClockMode = QSPI_CLOCK_MODE_0;
}
else
{
/* QSPI MODE3 */
qspi_bus->QSPI_Handler.Init.ClockMode = QSPI_CLOCK_MODE_3;
}
/* flash size */
qspi_bus->QSPI_Handler.Init.FlashSize = POSITION_VAL(qspi_cfg->medium_size) - 1;
result = HAL_QSPI_Init(&qspi_bus->QSPI_Handler);
if (result == HAL_OK)
{
LOG_D("qspi init success!");
}
else
{
LOG_E("qspi init failed (%d)!", result);
}
#ifdef BSP_QSPI_USING_DMA
/* QSPI interrupts must be enabled when using the HAL_QSPI_Receive_DMA */
HAL_NVIC_SetPriority(QSPI_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(QSPI_IRQn);
HAL_NVIC_SetPriority(QSPI_DMA_IRQ, 0, 0);
HAL_NVIC_EnableIRQ(QSPI_DMA_IRQ);
/* init QSPI DMA */
if(QSPI_DMA_RCC == RCC_AHB1ENR_DMA1EN)
{
__HAL_RCC_DMA1_CLK_ENABLE();
}
else
{
__HAL_RCC_DMA2_CLK_ENABLE();
}
HAL_DMA_DeInit(qspi_bus->QSPI_Handler.hdma);
DMA_HandleTypeDef hdma_quadspi_config = QSPI_DMA_CONFIG;
qspi_bus->hdma_quadspi = hdma_quadspi_config;
if (HAL_DMA_Init(&qspi_bus->hdma_quadspi) != HAL_OK)
{
LOG_E("qspi dma init failed (%d)!", result);
}
__HAL_LINKDMA(&qspi_bus->QSPI_Handler, hdma, qspi_bus->hdma_quadspi);
#endif /* BSP_QSPI_USING_DMA */
return result;
}
static void qspi_send_cmd(struct stm32_qspi_bus *qspi_bus, struct rt_qspi_message *message)
{
RT_ASSERT(qspi_bus != RT_NULL);
RT_ASSERT(message != RT_NULL);
QSPI_CommandTypeDef Cmdhandler;
/* set QSPI cmd struct */
Cmdhandler.Instruction = message->instruction.content;
Cmdhandler.Address = message->address.content;
Cmdhandler.DummyCycles = message->dummy_cycles;
if (message->instruction.qspi_lines == 0)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_NONE;
}
else if (message->instruction.qspi_lines == 1)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_1_LINE;
}
else if (message->instruction.qspi_lines == 2)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_2_LINES;
}
else if (message->instruction.qspi_lines == 4)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_4_LINES;
}
if (message->address.qspi_lines == 0)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_NONE;
}
else if (message->address.qspi_lines == 1)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_1_LINE;
}
else if (message->address.qspi_lines == 2)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_2_LINES;
}
else if (message->address.qspi_lines == 4)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_4_LINES;
}
if (message->address.size == 24)
{
Cmdhandler.AddressSize = QSPI_ADDRESS_24_BITS;
}
else
{
Cmdhandler.AddressSize = QSPI_ADDRESS_32_BITS;
}
if (message->qspi_data_lines == 0)
{
Cmdhandler.DataMode = QSPI_DATA_NONE;
}
else if (message->qspi_data_lines == 1)
{
Cmdhandler.DataMode = QSPI_DATA_1_LINE;
}
else if (message->qspi_data_lines == 2)
{
Cmdhandler.DataMode = QSPI_DATA_2_LINES;
}
else if (message->qspi_data_lines == 4)
{
Cmdhandler.DataMode = QSPI_DATA_4_LINES;
}
Cmdhandler.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
Cmdhandler.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
Cmdhandler.DdrMode = QSPI_DDR_MODE_DISABLE;
Cmdhandler.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
Cmdhandler.NbData = message->parent.length;
HAL_QSPI_Command(&qspi_bus->QSPI_Handler, &Cmdhandler, 5000);
}
static rt_uint32_t qspixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
rt_size_t len = 0;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
struct rt_qspi_message *qspi_message = (struct rt_qspi_message *)message;
struct stm32_qspi_bus *qspi_bus = device->bus->parent.user_data;
#ifdef BSP_QSPI_USING_SOFTCS
struct stm32_hw_spi_cs *cs = device->parent.user_data;
#endif
const rt_uint8_t *sndb = message->send_buf;
rt_uint8_t *rcvb = message->recv_buf;
rt_int32_t length = message->length;
#ifdef BSP_QSPI_USING_SOFTCS
if (message->cs_take)
{
rt_pin_write(cs->pin, 0);
}
#endif
/* send data */
if (sndb)
{
qspi_send_cmd(qspi_bus, qspi_message);
if (qspi_message->parent.length != 0)
{
if (HAL_QSPI_Transmit(&qspi_bus->QSPI_Handler, (rt_uint8_t *)sndb, 5000) == HAL_OK)
{
len = length;
}
else
{
LOG_E("QSPI send data failed(%d)!", qspi_bus->QSPI_Handler.ErrorCode);
qspi_bus->QSPI_Handler.State = HAL_QSPI_STATE_READY;
goto __exit;
}
}
else
{
len = 1;
}
}
else if (rcvb)/* recv data */
{
qspi_send_cmd(qspi_bus, qspi_message);
#ifdef BSP_QSPI_USING_DMA
if (HAL_QSPI_Receive_DMA(&qspi_bus->QSPI_Handler, rcvb) == HAL_OK)
#else
if (HAL_QSPI_Receive(&qspi_bus->QSPI_Handler, rcvb, 5000) == HAL_OK)
#endif
{
len = length;
#ifdef BSP_QSPI_USING_DMA
while (qspi_bus->QSPI_Handler.RxXferCount != 0);
#endif
}
else
{
LOG_E("QSPI recv data failed(%d)!", qspi_bus->QSPI_Handler.ErrorCode);
qspi_bus->QSPI_Handler.State = HAL_QSPI_STATE_READY;
goto __exit;
}
}
__exit:
#ifdef BSP_QSPI_USING_SOFTCS
if (message->cs_release)
{
rt_pin_write(cs->pin, 1);
}
#endif
return len;
}
static rt_err_t qspi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct rt_qspi_device *qspi_device = (struct rt_qspi_device *)device;
return stm32_qspi_init(qspi_device, &qspi_device->config);
}
static const struct rt_spi_ops stm32_qspi_ops =
{
.configure = qspi_configure,
.xfer = qspixfer,
};
static int stm32_qspi_register_bus(struct stm32_qspi_bus *qspi_bus, const char *name)
{
RT_ASSERT(qspi_bus != RT_NULL);
RT_ASSERT(name != RT_NULL);
_qspi_bus1.parent.user_data = qspi_bus;
return rt_qspi_bus_register(&_qspi_bus1, name, &stm32_qspi_ops);
}
/**
* @brief This function attach device to QSPI bus.
* @param device_name QSPI device name
* @param pin QSPI cs pin number
* @param data_line_width QSPI data lines width, such as 1, 2, 4
* @param enter_qspi_mode Callback function that lets FLASH enter QSPI mode
* @param exit_qspi_mode Callback function that lets FLASH exit QSPI mode
* @retval 0 : success
* -1 : failed
*/
rt_err_t stm32_qspi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint32_t pin, rt_uint8_t data_line_width, void (*enter_qspi_mode)(), void (*exit_qspi_mode)())
{
struct rt_qspi_device *qspi_device = RT_NULL;
struct stm32_hw_spi_cs *cs_pin = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
RT_ASSERT(data_line_width == 1 || data_line_width == 2 || data_line_width == 4);
qspi_device = (struct rt_qspi_device *)rt_malloc(sizeof(struct rt_qspi_device));
if (qspi_device == RT_NULL)
{
LOG_E("no memory, qspi bus attach device failed!");
result = RT_ENOMEM;
goto __exit;
}
cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
if (qspi_device == RT_NULL)
{
LOG_E("no memory, qspi bus attach device failed!");
result = RT_ENOMEM;
goto __exit;
}
qspi_device->enter_qspi_mode = enter_qspi_mode;
qspi_device->exit_qspi_mode = exit_qspi_mode;
qspi_device->config.qspi_dl_width = data_line_width;
cs_pin->Pin = pin;
#ifdef BSP_QSPI_USING_SOFTCS
rt_pin_mode(pin, PIN_MODE_OUTPUT);
rt_pin_write(pin, 1);
#endif
result = rt_spi_bus_attach_device(&qspi_device->parent, device_name, bus_name, (void *)cs_pin);
__exit:
if (result != RT_EOK)
{
if (qspi_device)
{
rt_free(qspi_device);
}
if (cs_pin)
{
rt_free(cs_pin);
}
}
return result;
}
#ifdef BSP_QSPI_USING_DMA
void QSPI_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_QSPI_IRQHandler(&_stm32_qspi_bus.QSPI_Handler);
/* leave interrupt */
rt_interrupt_leave();
}
void QSPI_DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&_stm32_qspi_bus.hdma_quadspi);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_QSPI_USING_DMA */
static int rt_hw_qspi_bus_init(void)
{
return stm32_qspi_register_bus(&_stm32_qspi_bus, "qspi1");
}
INIT_BOARD_EXPORT(rt_hw_qspi_bus_init);
#endif /* BSP_USING_QSPI */
#endif /* RT_USING_QSPI */

252
drivers/drv_rtc.c Normal file
View File

@ -0,0 +1,252 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-04 balanceTWK first version
*/
#include "board.h"
#include<rtthread.h>
#include<rtdevice.h>
#ifdef BSP_USING_ONCHIP_RTC
#ifndef HAL_RTCEx_BKUPRead
#define HAL_RTCEx_BKUPRead(x1, x2) (~BKUP_REG_DATA)
#endif
#ifndef HAL_RTCEx_BKUPWrite
#define HAL_RTCEx_BKUPWrite(x1, x2, x3)
#endif
#ifndef RTC_BKP_DR1
#define RTC_BKP_DR1 RT_NULL
#endif
//#define DRV_DEBUG
#define LOG_TAG "drv.rtc"
#include <drv_log.h>
#define BKUP_REG_DATA 0xA5A5
static struct rt_device rtc;
static RTC_HandleTypeDef RTC_Handler;
static time_t get_rtc_timestamp(void)
{
RTC_TimeTypeDef RTC_TimeStruct = {0};
RTC_DateTypeDef RTC_DateStruct = {0};
struct tm tm_new;
HAL_RTC_GetTime(&RTC_Handler, &RTC_TimeStruct, RTC_FORMAT_BIN);
HAL_RTC_GetDate(&RTC_Handler, &RTC_DateStruct, RTC_FORMAT_BIN);
tm_new.tm_sec = RTC_TimeStruct.Seconds;
tm_new.tm_min = RTC_TimeStruct.Minutes;
tm_new.tm_hour = RTC_TimeStruct.Hours;
tm_new.tm_mday = RTC_DateStruct.Date;
tm_new.tm_mon = RTC_DateStruct.Month - 1;
tm_new.tm_year = RTC_DateStruct.Year + 100;
LOG_D("get rtc time.");
return mktime(&tm_new);
}
static rt_err_t set_rtc_time_stamp(time_t time_stamp)
{
RTC_TimeTypeDef RTC_TimeStruct = {0};
RTC_DateTypeDef RTC_DateStruct = {0};
struct tm *p_tm;
p_tm = localtime(&time_stamp);
if (p_tm->tm_year < 100)
{
return -RT_ERROR;
}
RTC_TimeStruct.Seconds = p_tm->tm_sec ;
RTC_TimeStruct.Minutes = p_tm->tm_min ;
RTC_TimeStruct.Hours = p_tm->tm_hour;
RTC_DateStruct.Date = p_tm->tm_mday;
RTC_DateStruct.Month = p_tm->tm_mon + 1 ;
RTC_DateStruct.Year = p_tm->tm_year - 100;
RTC_DateStruct.WeekDay = p_tm->tm_wday + 1;
if (HAL_RTC_SetTime(&RTC_Handler, &RTC_TimeStruct, RTC_FORMAT_BIN) != HAL_OK)
{
return -RT_ERROR;
}
if (HAL_RTC_SetDate(&RTC_Handler, &RTC_DateStruct, RTC_FORMAT_BIN) != HAL_OK)
{
return -RT_ERROR;
}
LOG_D("set rtc time.");
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR1, BKUP_REG_DATA);
return RT_EOK;
}
static void rt_rtc_init(void)
{
#ifndef SOC_SERIES_STM32H7
__HAL_RCC_PWR_CLK_ENABLE();
#endif
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
#ifdef BSP_RTC_USING_LSI
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
#else
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
#endif
HAL_RCC_OscConfig(&RCC_OscInitStruct);
}
static rt_err_t rt_rtc_config(struct rt_device *dev)
{
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
HAL_PWR_EnableBkUpAccess();
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
#ifdef BSP_RTC_USING_LSI
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
#else
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
#endif
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);
/* Enable RTC Clock */
__HAL_RCC_RTC_ENABLE();
RTC_Handler.Instance = RTC;
if (HAL_RTCEx_BKUPRead(&RTC_Handler, RTC_BKP_DR1) != BKUP_REG_DATA)
{
LOG_I("RTC hasn't been configured, please use <date> command to config.");
#if defined(SOC_SERIES_STM32F1)
RTC_Handler.Init.OutPut = RTC_OUTPUTSOURCE_NONE;
RTC_Handler.Init.AsynchPrediv = RTC_AUTO_1_SECOND;
#elif defined(SOC_SERIES_STM32F0)
/* set the frequency division */
#ifdef BSP_RTC_USING_LSI
RTC_Handler.Init.AsynchPrediv = 0XA0;
RTC_Handler.Init.SynchPrediv = 0xFA;
#else
RTC_Handler.Init.AsynchPrediv = 0X7F;
RTC_Handler.Init.SynchPrediv = 0x0130;
#endif /* BSP_RTC_USING_LSI */
RTC_Handler.Init.HourFormat = RTC_HOURFORMAT_24;
RTC_Handler.Init.OutPut = RTC_OUTPUT_DISABLE;
RTC_Handler.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
RTC_Handler.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32H7)
/* set the frequency division */
#ifdef BSP_RTC_USING_LSI
RTC_Handler.Init.AsynchPrediv = 0X7D;
#else
RTC_Handler.Init.AsynchPrediv = 0X7F;
#endif /* BSP_RTC_USING_LSI */
RTC_Handler.Init.SynchPrediv = 0XFF;
RTC_Handler.Init.HourFormat = RTC_HOURFORMAT_24;
RTC_Handler.Init.OutPut = RTC_OUTPUT_DISABLE;
RTC_Handler.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
RTC_Handler.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
#endif
if (HAL_RTC_Init(&RTC_Handler) != HAL_OK)
{
return -RT_ERROR;
}
}
return RT_EOK;
}
static rt_err_t rt_rtc_control(rt_device_t dev, int cmd, void *args)
{
rt_err_t result = RT_EOK;
RT_ASSERT(dev != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_RTC_GET_TIME:
*(rt_uint32_t *)args = get_rtc_timestamp();
LOG_D("RTC: get rtc_time %x\n", *(rt_uint32_t *)args);
break;
case RT_DEVICE_CTRL_RTC_SET_TIME:
if (set_rtc_time_stamp(*(rt_uint32_t *)args))
{
result = -RT_ERROR;
}
LOG_D("RTC: set rtc_time %x\n", *(rt_uint32_t *)args);
break;
}
return result;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops rtc_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
rt_rtc_control
};
#endif
static rt_err_t rt_hw_rtc_register(rt_device_t device, const char *name, rt_uint32_t flag)
{
RT_ASSERT(device != RT_NULL);
rt_rtc_init();
if (rt_rtc_config(device) != RT_EOK)
{
return -RT_ERROR;
}
#ifdef RT_USING_DEVICE_OPS
device->ops = &rtc_ops;
#else
device->init = RT_NULL;
device->open = RT_NULL;
device->close = RT_NULL;
device->read = RT_NULL;
device->write = RT_NULL;
device->control = rt_rtc_control;
#endif
device->type = RT_Device_Class_RTC;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
device->user_data = RT_NULL;
/* register a character device */
return rt_device_register(device, name, flag);
}
int rt_hw_rtc_init(void)
{
rt_err_t result;
result = rt_hw_rtc_register(&rtc, "rtc", RT_DEVICE_FLAG_RDWR);
if (result != RT_EOK)
{
LOG_E("rtc register err code: %d", result);
return result;
}
LOG_D("rtc init success");
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_rtc_init);
#endif /* BSP_USING_ONCHIP_RTC */

889
drivers/drv_sdio.c Normal file
View File

@ -0,0 +1,889 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-06-22 tyx first
* 2018-12-12 balanceTWK first version
* 2019-06-11 WillianChan Add SD card hot plug detection
*/
#include "board.h"
#include "drv_sdio.h"
#include "drv_config.h"
#include<rtthread.h>
#include<rtdevice.h>
#ifdef BSP_USING_SDIO
//#define DRV_DEBUG
#define LOG_TAG "drv.sdio"
#include <drv_log.h>
static struct stm32_sdio_config sdio_config = SDIO_BUS_CONFIG;
static struct stm32_sdio_class sdio_obj;
static struct rt_mmcsd_host *host;
#define SDIO_TX_RX_COMPLETE_TIMEOUT_LOOPS (100000)
#define RTHW_SDIO_LOCK(_sdio) rt_mutex_take(&_sdio->mutex, RT_WAITING_FOREVER)
#define RTHW_SDIO_UNLOCK(_sdio) rt_mutex_release(&_sdio->mutex);
struct sdio_pkg
{
struct rt_mmcsd_cmd *cmd;
void *buff;
rt_uint32_t flag;
};
struct rthw_sdio
{
struct rt_mmcsd_host *host;
struct stm32_sdio_des sdio_des;
struct rt_event event;
struct rt_mutex mutex;
struct sdio_pkg *pkg;
};
ALIGN(SDIO_ALIGN_LEN)
static rt_uint8_t cache_buf[SDIO_BUFF_SIZE];
static rt_uint32_t stm32_sdio_clk_get(struct stm32_sdio *hw_sdio)
{
return SDIO_CLOCK_FREQ;
}
/**
* @brief This function get order from sdio.
* @param data
* @retval sdio order
*/
static int get_order(rt_uint32_t data)
{
int order = 0;
switch (data)
{
case 1:
order = 0;
break;
case 2:
order = 1;
break;
case 4:
order = 2;
break;
case 8:
order = 3;
break;
case 16:
order = 4;
break;
case 32:
order = 5;
break;
case 64:
order = 6;
break;
case 128:
order = 7;
break;
case 256:
order = 8;
break;
case 512:
order = 9;
break;
case 1024:
order = 10;
break;
case 2048:
order = 11;
break;
case 4096:
order = 12;
break;
case 8192:
order = 13;
break;
case 16384:
order = 14;
break;
default :
order = 0;
break;
}
return order;
}
/**
* @brief This function wait sdio completed.
* @param sdio rthw_sdio
* @retval None
*/
static void rthw_sdio_wait_completed(struct rthw_sdio *sdio)
{
rt_uint32_t status;
struct rt_mmcsd_cmd *cmd = sdio->pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
struct stm32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
if (rt_event_recv(&sdio->event, 0xffffffff, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
rt_tick_from_millisecond(5000), &status) != RT_EOK)
{
LOG_E("wait completed timeout");
cmd->err = -RT_ETIMEOUT;
return;
}
if (sdio->pkg == RT_NULL)
{
return;
}
cmd->resp[0] = hw_sdio->resp1;
cmd->resp[1] = hw_sdio->resp2;
cmd->resp[2] = hw_sdio->resp3;
cmd->resp[3] = hw_sdio->resp4;
if (status & HW_SDIO_ERRORS)
{
if ((status & HW_SDIO_IT_CCRCFAIL) && (resp_type(cmd) & (RESP_R3 | RESP_R4)))
{
cmd->err = RT_EOK;
}
else
{
cmd->err = -RT_ERROR;
}
if (status & HW_SDIO_IT_CTIMEOUT)
{
cmd->err = -RT_ETIMEOUT;
}
if (status & HW_SDIO_IT_DCRCFAIL)
{
data->err = -RT_ERROR;
}
if (status & HW_SDIO_IT_DTIMEOUT)
{
data->err = -RT_ETIMEOUT;
}
if (cmd->err == RT_EOK)
{
LOG_D("sta:0x%08X [%08X %08X %08X %08X]", status, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
else
{
LOG_D("err:0x%08x, %s%s%s%s%s%s%s cmd:%d arg:0x%08x rw:%c len:%d blksize:%d",
status,
status & HW_SDIO_IT_CCRCFAIL ? "CCRCFAIL " : "",
status & HW_SDIO_IT_DCRCFAIL ? "DCRCFAIL " : "",
status & HW_SDIO_IT_CTIMEOUT ? "CTIMEOUT " : "",
status & HW_SDIO_IT_DTIMEOUT ? "DTIMEOUT " : "",
status & HW_SDIO_IT_TXUNDERR ? "TXUNDERR " : "",
status & HW_SDIO_IT_RXOVERR ? "RXOVERR " : "",
status == 0 ? "NULL" : "",
cmd->cmd_code,
cmd->arg,
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->blks * data->blksize : 0,
data ? data->blksize : 0
);
}
}
else
{
cmd->err = RT_EOK;
LOG_D("sta:0x%08X [%08X %08X %08X %08X]", status, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
}
/**
* @brief This function transfer data by dma.
* @param sdio rthw_sdio
* @param pkg sdio package
* @retval None
*/
static void rthw_sdio_transfer_by_dma(struct rthw_sdio *sdio, struct sdio_pkg *pkg)
{
struct rt_mmcsd_data *data;
int size;
void *buff;
struct stm32_sdio *hw_sdio;
if ((RT_NULL == pkg) || (RT_NULL == sdio))
{
LOG_E("rthw_sdio_transfer_by_dma invalid args");
return;
}
data = pkg->cmd->data;
if (RT_NULL == data)
{
LOG_E("rthw_sdio_transfer_by_dma invalid args");
return;
}
buff = pkg->buff;
if (RT_NULL == buff)
{
LOG_E("rthw_sdio_transfer_by_dma invalid args");
return;
}
hw_sdio = sdio->sdio_des.hw_sdio;
size = data->blks * data->blksize;
if (data->flags & DATA_DIR_WRITE)
{
sdio->sdio_des.txconfig((rt_uint32_t *)buff, (rt_uint32_t *)&hw_sdio->fifo, size);
hw_sdio->dctrl |= HW_SDIO_DMA_ENABLE;
}
else if (data->flags & DATA_DIR_READ)
{
sdio->sdio_des.rxconfig((rt_uint32_t *)&hw_sdio->fifo, (rt_uint32_t *)buff, size);
hw_sdio->dctrl |= HW_SDIO_DMA_ENABLE | HW_SDIO_DPSM_ENABLE;
}
}
/**
* @brief This function send command.
* @param sdio rthw_sdio
* @param pkg sdio package
* @retval None
*/
static void rthw_sdio_send_command(struct rthw_sdio *sdio, struct sdio_pkg *pkg)
{
struct rt_mmcsd_cmd *cmd = pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
struct stm32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
rt_uint32_t reg_cmd;
/* save pkg */
sdio->pkg = pkg;
LOG_D("CMD:%d ARG:0x%08x RES:%s%s%s%s%s%s%s%s%s rw:%c len:%d blksize:%d",
cmd->cmd_code,
cmd->arg,
resp_type(cmd) == RESP_NONE ? "NONE" : "",
resp_type(cmd) == RESP_R1 ? "R1" : "",
resp_type(cmd) == RESP_R1B ? "R1B" : "",
resp_type(cmd) == RESP_R2 ? "R2" : "",
resp_type(cmd) == RESP_R3 ? "R3" : "",
resp_type(cmd) == RESP_R4 ? "R4" : "",
resp_type(cmd) == RESP_R5 ? "R5" : "",
resp_type(cmd) == RESP_R6 ? "R6" : "",
resp_type(cmd) == RESP_R7 ? "R7" : "",
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->blks * data->blksize : 0,
data ? data->blksize : 0
);
/* config cmd reg */
reg_cmd = cmd->cmd_code | HW_SDIO_CPSM_ENABLE;
if (resp_type(cmd) == RESP_NONE)
reg_cmd |= HW_SDIO_RESPONSE_NO;
else if (resp_type(cmd) == RESP_R2)
reg_cmd |= HW_SDIO_RESPONSE_LONG;
else
reg_cmd |= HW_SDIO_RESPONSE_SHORT;
/* config data reg */
if (data != RT_NULL)
{
rt_uint32_t dir = 0;
rt_uint32_t size = data->blks * data->blksize;
int order;
hw_sdio->dctrl = 0;
hw_sdio->dtimer = HW_SDIO_DATATIMEOUT;
hw_sdio->dlen = size;
order = get_order(data->blksize);
dir = (data->flags & DATA_DIR_READ) ? HW_SDIO_TO_HOST : 0;
hw_sdio->dctrl = HW_SDIO_IO_ENABLE | (order << 4) | dir;
}
/* transfer config */
if (data != RT_NULL)
{
rthw_sdio_transfer_by_dma(sdio, pkg);
}
/* open irq */
hw_sdio->mask |= HW_SDIO_IT_CMDSENT | HW_SDIO_IT_CMDREND | HW_SDIO_ERRORS;
if (data != RT_NULL)
{
hw_sdio->mask |= HW_SDIO_IT_DATAEND;
}
/* send cmd */
hw_sdio->arg = cmd->arg;
hw_sdio->cmd = reg_cmd;
/* wait completed */
rthw_sdio_wait_completed(sdio);
/* Waiting for data to be sent to completion */
if (data != RT_NULL)
{
volatile rt_uint32_t count = SDIO_TX_RX_COMPLETE_TIMEOUT_LOOPS;
while (count && (hw_sdio->sta & (HW_SDIO_IT_TXACT | HW_SDIO_IT_RXACT)))
{
count--;
}
if ((count == 0) || (hw_sdio->sta & HW_SDIO_ERRORS))
{
cmd->err = -RT_ERROR;
}
}
/* close irq, keep sdio irq */
hw_sdio->mask = hw_sdio->mask & HW_SDIO_IT_SDIOIT ? HW_SDIO_IT_SDIOIT : 0x00;
/* clear pkg */
sdio->pkg = RT_NULL;
}
/**
* @brief This function send sdio request.
* @param sdio rthw_sdio
* @param req request
* @retval None
*/
static void rthw_sdio_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct sdio_pkg pkg;
struct rthw_sdio *sdio = host->private_data;
struct rt_mmcsd_data *data;
RTHW_SDIO_LOCK(sdio);
if (req->cmd != RT_NULL)
{
memset(&pkg, 0, sizeof(pkg));
data = req->cmd->data;
pkg.cmd = req->cmd;
if (data != RT_NULL)
{
rt_uint32_t size = data->blks * data->blksize;
RT_ASSERT(size <= SDIO_BUFF_SIZE);
pkg.buff = data->buf;
if ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1))
{
pkg.buff = cache_buf;
if (data->flags & DATA_DIR_WRITE)
{
memcpy(cache_buf, data->buf, size);
}
}
}
rthw_sdio_send_command(sdio, &pkg);
if ((data != RT_NULL) && (data->flags & DATA_DIR_READ) && ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1)))
{
memcpy(data->buf, cache_buf, data->blksize * data->blks);
}
}
if (req->stop != RT_NULL)
{
memset(&pkg, 0, sizeof(pkg));
pkg.cmd = req->stop;
rthw_sdio_send_command(sdio, &pkg);
}
RTHW_SDIO_UNLOCK(sdio);
mmcsd_req_complete(sdio->host);
}
/**
* @brief This function config sdio.
* @param host rt_mmcsd_host
* @param io_cfg rt_mmcsd_io_cfg
* @retval None
*/
static void rthw_sdio_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
rt_uint32_t clkcr, div, clk_src;
rt_uint32_t clk = io_cfg->clock;
struct rthw_sdio *sdio = host->private_data;
struct stm32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
clk_src = sdio->sdio_des.clk_get(sdio->sdio_des.hw_sdio);
if (clk_src < 400 * 1000)
{
LOG_E("The clock rate is too low! rata:%d", clk_src);
return;
}
if (clk > host->freq_max) clk = host->freq_max;
if (clk > clk_src)
{
LOG_W("Setting rate is greater than clock source rate.");
clk = clk_src;
}
LOG_D("clk:%d width:%s%s%s power:%s%s%s",
clk,
io_cfg->bus_width == MMCSD_BUS_WIDTH_8 ? "8" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_4 ? "4" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_1 ? "1" : "",
io_cfg->power_mode == MMCSD_POWER_OFF ? "OFF" : "",
io_cfg->power_mode == MMCSD_POWER_UP ? "UP" : "",
io_cfg->power_mode == MMCSD_POWER_ON ? "ON" : ""
);
RTHW_SDIO_LOCK(sdio);
div = clk_src / clk;
if ((clk == 0) || (div == 0))
{
clkcr = 0;
}
else
{
if (div < 2)
{
div = 2;
}
else if (div > 0xFF)
{
div = 0xFF;
}
div -= 2;
clkcr = div | HW_SDIO_CLK_ENABLE;
}
if (io_cfg->bus_width == MMCSD_BUS_WIDTH_8)
{
clkcr |= HW_SDIO_BUSWIDE_8B;
}
else if (io_cfg->bus_width == MMCSD_BUS_WIDTH_4)
{
clkcr |= HW_SDIO_BUSWIDE_4B;
}
else
{
clkcr |= HW_SDIO_BUSWIDE_1B;
}
hw_sdio->clkcr = clkcr;
switch (io_cfg->power_mode)
{
case MMCSD_POWER_OFF:
hw_sdio->power = HW_SDIO_POWER_OFF;
break;
case MMCSD_POWER_UP:
hw_sdio->power = HW_SDIO_POWER_UP;
break;
case MMCSD_POWER_ON:
hw_sdio->power = HW_SDIO_POWER_ON;
break;
default:
LOG_W("unknown power_mode %d", io_cfg->power_mode);
break;
}
RTHW_SDIO_UNLOCK(sdio);
}
/**
* @brief This function update sdio interrupt.
* @param host rt_mmcsd_host
* @param enable
* @retval None
*/
void rthw_sdio_irq_update(struct rt_mmcsd_host *host, rt_int32_t enable)
{
struct rthw_sdio *sdio = host->private_data;
struct stm32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
if (enable)
{
LOG_D("enable sdio irq");
hw_sdio->mask |= HW_SDIO_IT_SDIOIT;
}
else
{
LOG_D("disable sdio irq");
hw_sdio->mask &= ~HW_SDIO_IT_SDIOIT;
}
}
/**
* @brief This function delect sdcard.
* @param host rt_mmcsd_host
* @retval 0x01
*/
static rt_int32_t rthw_sd_delect(struct rt_mmcsd_host *host)
{
LOG_D("try to detect device");
return 0x01;
}
/**
* @brief This function interrupt process function.
* @param host rt_mmcsd_host
* @retval None
*/
void rthw_sdio_irq_process(struct rt_mmcsd_host *host)
{
int complete = 0;
struct rthw_sdio *sdio = host->private_data;
struct stm32_sdio *hw_sdio = sdio->sdio_des.hw_sdio;
rt_uint32_t intstatus = hw_sdio->sta;
if (intstatus & HW_SDIO_ERRORS)
{
hw_sdio->icr = HW_SDIO_ERRORS;
complete = 1;
}
else
{
if (intstatus & HW_SDIO_IT_CMDREND)
{
hw_sdio->icr = HW_SDIO_IT_CMDREND;
if (sdio->pkg != RT_NULL)
{
if (!sdio->pkg->cmd->data)
{
complete = 1;
}
else if ((sdio->pkg->cmd->data->flags & DATA_DIR_WRITE))
{
hw_sdio->dctrl |= HW_SDIO_DPSM_ENABLE;
}
}
}
if (intstatus & HW_SDIO_IT_CMDSENT)
{
hw_sdio->icr = HW_SDIO_IT_CMDSENT;
if (resp_type(sdio->pkg->cmd) == RESP_NONE)
{
complete = 1;
}
}
if (intstatus & HW_SDIO_IT_DATAEND)
{
hw_sdio->icr = HW_SDIO_IT_DATAEND;
complete = 1;
}
}
if ((intstatus & HW_SDIO_IT_SDIOIT) && (hw_sdio->mask & HW_SDIO_IT_SDIOIT))
{
hw_sdio->icr = HW_SDIO_IT_SDIOIT;
sdio_irq_wakeup(host);
}
if (complete)
{
hw_sdio->mask &= ~HW_SDIO_ERRORS;
rt_event_send(&sdio->event, intstatus);
}
}
static const struct rt_mmcsd_host_ops ops =
{
rthw_sdio_request,
rthw_sdio_iocfg,
rthw_sd_delect,
rthw_sdio_irq_update,
};
/**
* @brief This function create mmcsd host.
* @param sdio_des stm32_sdio_des
* @retval rt_mmcsd_host
*/
struct rt_mmcsd_host *sdio_host_create(struct stm32_sdio_des *sdio_des)
{
struct rt_mmcsd_host *host;
struct rthw_sdio *sdio = RT_NULL;
if ((sdio_des == RT_NULL) || (sdio_des->txconfig == RT_NULL) || (sdio_des->rxconfig == RT_NULL))
{
LOG_E("L:%d F:%s %s %s %s",
(sdio_des == RT_NULL ? "sdio_des is NULL" : ""),
(sdio_des ? (sdio_des->txconfig ? "txconfig is NULL" : "") : ""),
(sdio_des ? (sdio_des->rxconfig ? "rxconfig is NULL" : "") : "")
);
return RT_NULL;
}
sdio = rt_malloc(sizeof(struct rthw_sdio));
if (sdio == RT_NULL)
{
LOG_E("L:%d F:%s malloc rthw_sdio fail");
return RT_NULL;
}
rt_memset(sdio, 0, sizeof(struct rthw_sdio));
host = mmcsd_alloc_host();
if (host == RT_NULL)
{
LOG_E("L:%d F:%s mmcsd alloc host fail");
rt_free(sdio);
return RT_NULL;
}
rt_memcpy(&sdio->sdio_des, sdio_des, sizeof(struct stm32_sdio_des));
sdio->sdio_des.hw_sdio = (sdio_des->hw_sdio == RT_NULL ? (struct stm32_sdio *)SDIO_BASE_ADDRESS : sdio_des->hw_sdio);
sdio->sdio_des.clk_get = (sdio_des->clk_get == RT_NULL ? stm32_sdio_clk_get : sdio_des->clk_get);
rt_event_init(&sdio->event, "sdio", RT_IPC_FLAG_FIFO);
rt_mutex_init(&sdio->mutex, "sdio", RT_IPC_FLAG_FIFO);
/* set host defautl attributes */
host->ops = &ops;
host->freq_min = 400 * 1000;
host->freq_max = SDIO_MAX_FREQ;
host->valid_ocr = 0X00FFFF80;/* The voltage range supported is 1.65v-3.6v */
#ifndef SDIO_USING_1_BIT
host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ;
#else
host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ;
#endif
host->max_seg_size = SDIO_BUFF_SIZE;
host->max_dma_segs = 1;
host->max_blk_size = 512;
host->max_blk_count = 512;
/* link up host and sdio */
sdio->host = host;
host->private_data = sdio;
rthw_sdio_irq_update(host, 1);
/* ready to change */
mmcsd_change(host);
return host;
}
/**
* @brief This function configures the DMATX.
* @param BufferSRC: pointer to the source buffer
* @param BufferSize: buffer size
* @retval None
*/
void SD_LowLevel_DMA_TxConfig(uint32_t *src, uint32_t *dst, uint32_t BufferSize)
{
#if defined(SOC_SERIES_STM32F1)
static uint32_t size = 0;
size += BufferSize * 4;
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_tx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
sdio_obj.dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_tx.Init.Priority = DMA_PRIORITY_MEDIUM;
/* DMA_PFCTRL */
HAL_DMA_DeInit(&sdio_obj.dma.handle_tx);
HAL_DMA_Init(&sdio_obj.dma.handle_tx);
HAL_DMA_Start(&sdio_obj.dma.handle_tx, (uint32_t)src, (uint32_t)dst, BufferSize);
#elif defined(SOC_SERIES_STM32L4)
static uint32_t size = 0;
size += BufferSize * 4;
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_tx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_tx.Init.Request = sdio_config.dma_tx.request;
sdio_obj.dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
sdio_obj.dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.Mode = DMA_NORMAL;
sdio_obj.dma.handle_tx.Init.Priority = DMA_PRIORITY_MEDIUM;
HAL_DMA_DeInit(&sdio_obj.dma.handle_tx);
HAL_DMA_Init(&sdio_obj.dma.handle_tx);
HAL_DMA_Start(&sdio_obj.dma.handle_tx, (uint32_t)src, (uint32_t)dst, BufferSize);
#else
static uint32_t size = 0;
size += BufferSize * 4;
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_tx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_tx.Init.Channel = sdio_config.dma_tx.channel;
sdio_obj.dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
sdio_obj.dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_tx.Init.Mode = DMA_PFCTRL;
sdio_obj.dma.handle_tx.Init.Priority = DMA_PRIORITY_MEDIUM;
sdio_obj.dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
sdio_obj.dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
sdio_obj.dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
sdio_obj.dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
/* DMA_PFCTRL */
HAL_DMA_DeInit(&sdio_obj.dma.handle_tx);
HAL_DMA_Init(&sdio_obj.dma.handle_tx);
HAL_DMA_Start(&sdio_obj.dma.handle_tx, (uint32_t)src, (uint32_t)dst, BufferSize);
#endif
}
/**
* @brief This function configures the DMARX.
* @param BufferDST: pointer to the destination buffer
* @param BufferSize: buffer size
* @retval None
*/
void SD_LowLevel_DMA_RxConfig(uint32_t *src, uint32_t *dst, uint32_t BufferSize)
{
#if defined(SOC_SERIES_STM32F1)
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_rx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
sdio_obj.dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_rx.Init.Priority = DMA_PRIORITY_MEDIUM;
HAL_DMA_DeInit(&sdio_obj.dma.handle_rx);
HAL_DMA_Init(&sdio_obj.dma.handle_rx);
HAL_DMA_Start(&sdio_obj.dma.handle_rx, (uint32_t)src, (uint32_t)dst, BufferSize);
#elif defined(SOC_SERIES_STM32L4)
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_rx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_rx.Init.Request = sdio_config.dma_tx.request;
sdio_obj.dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
sdio_obj.dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.Mode = DMA_NORMAL;
sdio_obj.dma.handle_rx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_DeInit(&sdio_obj.dma.handle_rx);
HAL_DMA_Init(&sdio_obj.dma.handle_rx);
HAL_DMA_Start(&sdio_obj.dma.handle_rx, (uint32_t)src, (uint32_t)dst, BufferSize);
#else
sdio_obj.cfg = &sdio_config;
sdio_obj.dma.handle_rx.Instance = sdio_config.dma_tx.Instance;
sdio_obj.dma.handle_rx.Init.Channel = sdio_config.dma_tx.channel;
sdio_obj.dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
sdio_obj.dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
sdio_obj.dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
sdio_obj.dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
sdio_obj.dma.handle_rx.Init.Mode = DMA_PFCTRL;
sdio_obj.dma.handle_rx.Init.Priority = DMA_PRIORITY_MEDIUM;
sdio_obj.dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
sdio_obj.dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
sdio_obj.dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
sdio_obj.dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
HAL_DMA_DeInit(&sdio_obj.dma.handle_rx);
HAL_DMA_Init(&sdio_obj.dma.handle_rx);
HAL_DMA_Start(&sdio_obj.dma.handle_rx, (uint32_t)src, (uint32_t)dst, BufferSize);
#endif
}
/**
* @brief This function get stm32 sdio clock.
* @param hw_sdio: stm32_sdio
* @retval PCLK2Freq
*/
static rt_uint32_t stm32_sdio_clock_get(struct stm32_sdio *hw_sdio)
{
return HAL_RCC_GetPCLK2Freq();
}
static rt_err_t DMA_TxConfig(rt_uint32_t *src, rt_uint32_t *dst, int Size)
{
SD_LowLevel_DMA_TxConfig((uint32_t *)src, (uint32_t *)dst, Size / 4);
return RT_EOK;
}
static rt_err_t DMA_RxConfig(rt_uint32_t *src, rt_uint32_t *dst, int Size)
{
SD_LowLevel_DMA_RxConfig((uint32_t *)src, (uint32_t *)dst, Size / 4);
return RT_EOK;
}
void SDIO_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
/* Process All SDIO Interrupt Sources */
rthw_sdio_irq_process(host);
/* leave interrupt */
rt_interrupt_leave();
}
int rt_hw_sdio_init(void)
{
struct stm32_sdio_des sdio_des;
SD_HandleTypeDef hsd;
hsd.Instance = SDCARD_INSTANCE;
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, sdio_config.dma_rx.dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, sdio_config.dma_rx.dma_rcc);
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4)
SET_BIT(RCC->AHB1ENR, sdio_config.dma_rx.dma_rcc);
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, sdio_config.dma_rx.dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
HAL_NVIC_SetPriority(SDIO_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(SDIO_IRQn);
HAL_SD_MspInit(&hsd);
sdio_des.clk_get = stm32_sdio_clock_get;
sdio_des.hw_sdio = (struct stm32_sdio *)SDCARD_INSTANCE;
sdio_des.rxconfig = DMA_RxConfig;
sdio_des.txconfig = DMA_TxConfig;
host = sdio_host_create(&sdio_des);
if (host == RT_NULL)
{
LOG_E("host create fail");
return -1;
}
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_sdio_init);
void stm32_mmcsd_change(void)
{
mmcsd_change(host);
}
#endif

222
drivers/drv_soft_i2c.c Normal file
View File

@ -0,0 +1,222 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-08 balanceTWK first version
*/
#include <board.h>
#include "drv_soft_i2c.h"
#include "drv_config.h"
#include<rtthread.h>
#include<rtdevice.h>
#ifdef RT_USING_I2C
//#define DRV_DEBUG
#define LOG_TAG "drv.i2c"
#include <drv_log.h>
#if !defined(BSP_USING_I2C1) && !defined(BSP_USING_I2C2) && !defined(BSP_USING_I2C3) && !defined(BSP_USING_I2C4)
#error "Please define at least one BSP_USING_I2Cx"
#endif
static const struct stm32_soft_i2c_config soft_i2c_config[] =
{
#ifdef BSP_USING_I2C1
I2C1_BUS_CONFIG,
#endif
#ifdef BSP_USING_I2C2
I2C2_BUS_CONFIG,
#endif
#ifdef BSP_USING_I2C3
I2C3_BUS_CONFIG,
#endif
#ifdef BSP_USING_I2C4
I2C4_BUS_CONFIG,
#endif
};
static struct stm32_i2c i2c_obj[sizeof(soft_i2c_config) / sizeof(soft_i2c_config[0])];
/**
* This function initializes the i2c pin.
*
* @param Stm32 i2c dirver class.
*/
static void stm32_i2c_gpio_init(struct stm32_i2c *i2c)
{
struct stm32_soft_i2c_config* cfg = (struct stm32_soft_i2c_config*)i2c->ops.data;
rt_pin_mode(cfg->scl, PIN_MODE_OUTPUT_OD);
rt_pin_mode(cfg->sda, PIN_MODE_OUTPUT_OD);
rt_pin_write(cfg->scl, PIN_HIGH);
rt_pin_write(cfg->sda, PIN_HIGH);
}
/**
* This function sets the sda pin.
*
* @param Stm32 config class.
* @param The sda pin state.
*/
static void stm32_set_sda(void *data, rt_int32_t state)
{
struct stm32_soft_i2c_config* cfg = (struct stm32_soft_i2c_config*)data;
if (state)
{
rt_pin_write(cfg->sda, PIN_HIGH);
}
else
{
rt_pin_write(cfg->sda, PIN_LOW);
}
}
/**
* This function sets the scl pin.
*
* @param Stm32 config class.
* @param The scl pin state.
*/
static void stm32_set_scl(void *data, rt_int32_t state)
{
struct stm32_soft_i2c_config* cfg = (struct stm32_soft_i2c_config*)data;
if (state)
{
rt_pin_write(cfg->scl, PIN_HIGH);
}
else
{
rt_pin_write(cfg->scl, PIN_LOW);
}
}
/**
* This function gets the sda pin state.
*
* @param The sda pin state.
*/
static rt_int32_t stm32_get_sda(void *data)
{
struct stm32_soft_i2c_config* cfg = (struct stm32_soft_i2c_config*)data;
return rt_pin_read(cfg->sda);
}
/**
* This function gets the scl pin state.
*
* @param The scl pin state.
*/
static rt_int32_t stm32_get_scl(void *data)
{
struct stm32_soft_i2c_config* cfg = (struct stm32_soft_i2c_config*)data;
return rt_pin_read(cfg->scl);
}
/**
* The time delay function.
*
* @param microseconds.
*/
static void stm32_udelay(rt_uint32_t us)
{
rt_uint32_t ticks;
rt_uint32_t told, tnow, tcnt = 0;
rt_uint32_t reload = SysTick->LOAD;
ticks = us * reload / (1000000 / RT_TICK_PER_SECOND);
told = SysTick->VAL;
while (1)
{
tnow = SysTick->VAL;
if (tnow != told)
{
if (tnow < told)
{
tcnt += told - tnow;
}
else
{
tcnt += reload - tnow + told;
}
told = tnow;
if (tcnt >= ticks)
{
break;
}
}
}
}
static const struct rt_i2c_bit_ops stm32_bit_ops_default =
{
.data = RT_NULL,
.set_sda = stm32_set_sda,
.set_scl = stm32_set_scl,
.get_sda = stm32_get_sda,
.get_scl = stm32_get_scl,
.udelay = stm32_udelay,
.delay_us = 1,
.timeout = 100
};
/**
* if i2c is locked, this function will unlock it
*
* @param stm32 config class
*
* @return RT_EOK indicates successful unlock.
*/
static rt_err_t stm32_i2c_bus_unlock(const struct stm32_soft_i2c_config *cfg)
{
rt_int32_t i = 0;
if (PIN_LOW == rt_pin_read(cfg->sda))
{
while (i++ < 9)
{
rt_pin_write(cfg->scl, PIN_HIGH);
stm32_udelay(100);
rt_pin_write(cfg->scl, PIN_LOW);
stm32_udelay(100);
}
}
if (PIN_LOW == rt_pin_read(cfg->sda))
{
return -RT_ERROR;
}
return RT_EOK;
}
/* I2C initialization function */
int rt_hw_i2c_init(void)
{
rt_size_t obj_num = sizeof(i2c_obj) / sizeof(struct stm32_i2c);
rt_err_t result;
for (int i = 0; i < obj_num; i++)
{
i2c_obj[i].ops = stm32_bit_ops_default;
i2c_obj[i].ops.data = (void*)&soft_i2c_config[i];
i2c_obj[i].i2c2_bus.priv = &i2c_obj[i].ops;
stm32_i2c_gpio_init(&i2c_obj[i]);
result = rt_i2c_bit_add_bus(&i2c_obj[i].i2c2_bus, soft_i2c_config[i].bus_name);
RT_ASSERT(result == RT_EOK);
stm32_i2c_bus_unlock(&soft_i2c_config[i]);
LOG_D("software simulation %s init done, pin scl: %d, pin sda %d",
soft_i2c_config[i].bus_name,
soft_i2c_config[i].scl,
soft_i2c_config[i].sda);
}
return RT_EOK;
}
INIT_BOARD_EXPORT(rt_hw_i2c_init);
#endif /* RT_USING_I2C */

914
drivers/drv_spi.c Normal file
View File

@ -0,0 +1,914 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-5 SummerGift first version
* 2018-12-11 greedyhao Porting for stm32f7xx
* 2019-01-03 zylx modify DMA initialization and spixfer function
* 2020-01-15 whj4674672 Porting for stm32h7xx
*/
#include "board.h"
#include<rtthread.h>
#include<rtdevice.h>
#ifdef RT_USING_SPI
#if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
#include "drv_spi.h"
#include "drv_config.h"
#include <string.h>
//#define DRV_DEBUG
#define LOG_TAG "drv.spi"
#include <drv_log.h>
enum
{
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
#ifdef BSP_USING_SPI2
SPI2_INDEX,
#endif
#ifdef BSP_USING_SPI3
SPI3_INDEX,
#endif
#ifdef BSP_USING_SPI4
SPI4_INDEX,
#endif
#ifdef BSP_USING_SPI5
SPI5_INDEX,
#endif
#ifdef BSP_USING_SPI6
SPI6_INDEX,
#endif
};
static struct stm32_spi_config spi_config[] =
{
#ifdef BSP_USING_SPI1
SPI1_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI2
SPI2_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI3
SPI3_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI4
SPI4_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI5
SPI5_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI6
SPI6_BUS_CONFIG,
#endif
};
static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
{
RT_ASSERT(spi_drv != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
if (cfg->mode & RT_SPI_SLAVE)
{
spi_handle->Init.Mode = SPI_MODE_SLAVE;
}
else
{
spi_handle->Init.Mode = SPI_MODE_MASTER;
}
if (cfg->mode & RT_SPI_3WIRE)
{
spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
}
else
{
spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
}
if (cfg->data_width == 8)
{
spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
spi_handle->TxXferSize = 8;
spi_handle->RxXferSize = 8;
}
else if (cfg->data_width == 16)
{
spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
}
else
{
return RT_EIO;
}
if (cfg->mode & RT_SPI_CPHA)
{
spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
}
else
{
spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
}
if (cfg->mode & RT_SPI_CPOL)
{
spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
}
else
{
spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
}
if (cfg->mode & RT_SPI_NO_CS)
{
spi_handle->Init.NSS = SPI_NSS_SOFT;
}
else
{
spi_handle->Init.NSS = SPI_NSS_SOFT;
}
uint32_t SPI_APB_CLOCK;
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0)
SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq();
#elif defined(SOC_SERIES_STM32H7)
SPI_APB_CLOCK = HAL_RCC_GetSysClockFreq();
#else
SPI_APB_CLOCK = HAL_RCC_GetPCLK2Freq();
#endif
if (cfg->max_hz >= SPI_APB_CLOCK / 2)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 4)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
}
else
{
/* min prescaler 256 */
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
}
LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d",
HAL_RCC_GetSysClockFreq(),
SPI_APB_CLOCK,
cfg->max_hz,
spi_handle->Init.BaudRatePrescaler);
if (cfg->mode & RT_SPI_MSB)
{
spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
}
else
{
spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
}
spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spi_handle->State = HAL_SPI_STATE_RESET;
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
#elif defined(SOC_SERIES_STM32H7)
spi_handle->Init.Mode = SPI_MODE_MASTER;
spi_handle->Init.NSS = SPI_NSS_SOFT;
spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
spi_handle->Init.CRCPolynomial = 7;
spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_08DATA;
#endif
if (HAL_SPI_Init(spi_handle) != HAL_OK)
{
return RT_EIO;
}
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
|| defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0)
SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
#endif
/* DMA configuration */
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
HAL_DMA_Init(&spi_drv->dma.handle_rx);
__HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
}
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
HAL_DMA_Init(&spi_drv->dma.handle_tx);
__HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 0, 1);
HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
}
__HAL_SPI_ENABLE(spi_handle);
LOG_D("%s init done", spi_drv->config->bus_name);
return RT_EOK;
}
static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
HAL_StatusTypeDef state;
rt_size_t message_length, already_send_length;
rt_uint16_t send_length;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
RT_ASSERT(message != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
struct stm32_hw_spi_cs *cs = device->parent.user_data;
if (message->cs_take)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
}
LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
spi_drv->config->bus_name,
(uint32_t)message->send_buf,
(uint32_t)message->recv_buf, message->length);
message_length = message->length;
recv_buf = message->recv_buf;
send_buf = message->send_buf;
while (message_length)
{
/* the HAL library use uint16 to save the data length */
if (message_length > 65535)
{
send_length = 65535;
message_length = message_length - 65535;
}
else
{
send_length = message_length;
message_length = 0;
}
/* calculate the start address */
already_send_length = message->length - send_length - message_length;
send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
/* start once data exchange in DMA mode */
if (message->send_buf && message->recv_buf)
{
if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
{
state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length);
}
else
{
state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
}
}
else if (message->send_buf)
{
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, send_length);
}
else
{
state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
}
}
else
{
memset((uint8_t *)recv_buf, 0xff, send_length);
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, send_length);
}
else
{
state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
}
}
if (state != HAL_OK)
{
LOG_I("spi transfer error : %d", state);
message->length = 0;
spi_handle->State = HAL_SPI_STATE_READY;
}
else
{
LOG_D("%s transfer done", spi_drv->config->bus_name);
}
/* For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
}
if (message->cs_release)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
}
return message->length;
}
static rt_err_t spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
spi_drv->cfg = configuration;
return stm32_spi_init(spi_drv, configuration);
}
static const struct rt_spi_ops stm_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer,
};
static int rt_hw_spi_bus_init(void)
{
rt_err_t result;
for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
{
spi_bus_obj[i].config = &spi_config[i];
spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
/* Configure the DMA handler for Transmission process */
spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0)
spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
#endif
spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
#endif
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4)
SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
}
if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
/* Configure the DMA handler for Transmission process */
spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0)
spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
#endif
spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
#endif
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4)
SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
}
result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
RT_ASSERT(result == RT_EOK);
LOG_D("%s bus init done", spi_config[i].bus_name);
}
return result;
}
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef *cs_gpiox, uint16_t cs_gpio_pin)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
struct stm32_hw_spi_cs *cs_pin;
/* initialize the cs pin && select the slave*/
GPIO_InitTypeDef GPIO_Initure;
GPIO_Initure.Pin = cs_gpio_pin;
GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_Initure.Pull = GPIO_PULLUP;
GPIO_Initure.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(cs_gpiox, &GPIO_Initure);
HAL_GPIO_WritePin(cs_gpiox, cs_gpio_pin, GPIO_PIN_SET);
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->GPIOx = cs_gpiox;
cs_pin->GPIO_Pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
if (result != RT_EOK)
{
LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
void SPI1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI1_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI1_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
void SPI2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI2_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI2_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
void SPI3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI3_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI3_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
void SPI4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI4_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI4_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
void SPI5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI5_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI5_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI6_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI6_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
static void stm32_get_dma_info(void)
{
#ifdef BSP_SPI1_RX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
#endif
#ifdef BSP_SPI1_TX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
#endif
#ifdef BSP_SPI2_RX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
#endif
#ifdef BSP_SPI2_TX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
#endif
#ifdef BSP_SPI3_RX_USING_DMA
spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
#endif
#ifdef BSP_SPI3_TX_USING_DMA
spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
#endif
#ifdef BSP_SPI4_RX_USING_DMA
spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
#endif
#ifdef BSP_SPI4_TX_USING_DMA
spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
#endif
#ifdef BSP_SPI5_RX_USING_DMA
spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
#endif
#ifdef BSP_SPI5_TX_USING_DMA
spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
#endif
#ifdef BSP_SPI6_RX_USING_DMA
spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
#endif
#ifdef BSP_SPI6_TX_USING_DMA
spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
#endif
}
#if defined(SOC_SERIES_STM32F0)
void SPI1_DMA_RX_TX_IRQHandler(void)
{
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
SPI1_DMA_TX_IRQHandler();
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
SPI1_DMA_RX_IRQHandler();
#endif
}
void SPI2_DMA_RX_TX_IRQHandler(void)
{
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
SPI2_DMA_TX_IRQHandler();
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
SPI2_DMA_RX_IRQHandler();
#endif
}
#endif /* SOC_SERIES_STM32F0 */
int rt_hw_spi_init(void)
{
stm32_get_dma_info();
return rt_hw_spi_bus_init();
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
#endif /* RT_USING_SPI */

1396
drivers/drv_usart.c Normal file

File diff suppressed because it is too large Load Diff

277
drivers/drv_usbd.c Normal file
View File

@ -0,0 +1,277 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-04-10 ZYH first version
* 2019-10-27 flybreak Compatible with the HS
*/
#include <rtthread.h>
#include "board.h"
#ifdef BSP_USING_USBDEVICE
#include <rtdevice.h>
#include <string.h>
#include <drv_config.h>
static PCD_HandleTypeDef _stm_pcd;
static struct udcd _stm_udc;
static struct ep_id _ep_pool[] =
{
{0x0, USB_EP_ATTR_CONTROL, USB_DIR_INOUT, 64, ID_ASSIGNED },
{0x1, USB_EP_ATTR_BULK, USB_DIR_IN, 64, ID_UNASSIGNED},
{0x1, USB_EP_ATTR_BULK, USB_DIR_OUT, 64, ID_UNASSIGNED},
{0x2, USB_EP_ATTR_INT, USB_DIR_IN, 64, ID_UNASSIGNED},
{0x2, USB_EP_ATTR_INT, USB_DIR_OUT, 64, ID_UNASSIGNED},
{0x3, USB_EP_ATTR_BULK, USB_DIR_IN, 64, ID_UNASSIGNED},
#if !defined(SOC_SERIES_STM32F1)
{0x3, USB_EP_ATTR_BULK, USB_DIR_OUT, 64, ID_UNASSIGNED},
#endif
{0xFF, USB_EP_ATTR_TYPE_MASK, USB_DIR_MASK, 0, ID_ASSIGNED },
};
void USBD_IRQ_HANDLER(void)
{
rt_interrupt_enter();
HAL_PCD_IRQHandler(&_stm_pcd);
/* leave interrupt */
rt_interrupt_leave();
}
void HAL_PCD_ResetCallback(PCD_HandleTypeDef *pcd)
{
/* open ep0 OUT and IN */
HAL_PCD_EP_Open(pcd, 0x00, 0x40, EP_TYPE_CTRL);
HAL_PCD_EP_Open(pcd, 0x80, 0x40, EP_TYPE_CTRL);
rt_usbd_reset_handler(&_stm_udc);
}
void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd)
{
rt_usbd_ep0_setup_handler(&_stm_udc, (struct urequest *)hpcd->Setup);
}
void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
{
if (epnum == 0)
{
rt_usbd_ep0_in_handler(&_stm_udc);
}
else
{
rt_usbd_ep_in_handler(&_stm_udc, 0x80 | epnum, hpcd->IN_ep[epnum].xfer_count);
}
}
void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd)
{
rt_usbd_connect_handler(&_stm_udc);
}
void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd)
{
rt_usbd_sof_handler(&_stm_udc);
}
void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd)
{
rt_usbd_disconnect_handler(&_stm_udc);
}
void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum)
{
if (epnum != 0)
{
rt_usbd_ep_out_handler(&_stm_udc, epnum, hpcd->OUT_ep[epnum].xfer_count);
}
else
{
rt_usbd_ep0_out_handler(&_stm_udc, hpcd->OUT_ep[0].xfer_count);
}
}
void HAL_PCDEx_SetConnectionState(PCD_HandleTypeDef *hpcd, uint8_t state)
{
if (state == 1)
{
#if defined(SOC_SERIES_STM32F1)
rt_pin_mode(BSP_USB_CONNECT_PIN,PIN_MODE_OUTPUT);
rt_pin_write(BSP_USB_CONNECT_PIN, BSP_USB_PULL_UP_STATUS);
#endif
}
else
{
#if defined(SOC_SERIES_STM32F1)
rt_pin_mode(BSP_USB_CONNECT_PIN,PIN_MODE_OUTPUT);
rt_pin_write(BSP_USB_CONNECT_PIN, !BSP_USB_PULL_UP_STATUS);
#endif
}
}
static rt_err_t _ep_set_stall(rt_uint8_t address)
{
HAL_PCD_EP_SetStall(&_stm_pcd, address);
return RT_EOK;
}
static rt_err_t _ep_clear_stall(rt_uint8_t address)
{
HAL_PCD_EP_ClrStall(&_stm_pcd, address);
return RT_EOK;
}
static rt_err_t _set_address(rt_uint8_t address)
{
HAL_PCD_SetAddress(&_stm_pcd, address);
return RT_EOK;
}
static rt_err_t _set_config(rt_uint8_t address)
{
return RT_EOK;
}
static rt_err_t _ep_enable(uep_t ep)
{
RT_ASSERT(ep != RT_NULL);
RT_ASSERT(ep->ep_desc != RT_NULL);
HAL_PCD_EP_Open(&_stm_pcd, ep->ep_desc->bEndpointAddress,
ep->ep_desc->wMaxPacketSize, ep->ep_desc->bmAttributes);
return RT_EOK;
}
static rt_err_t _ep_disable(uep_t ep)
{
RT_ASSERT(ep != RT_NULL);
RT_ASSERT(ep->ep_desc != RT_NULL);
HAL_PCD_EP_Close(&_stm_pcd, ep->ep_desc->bEndpointAddress);
return RT_EOK;
}
static rt_size_t _ep_read(rt_uint8_t address, void *buffer)
{
rt_size_t size = 0;
RT_ASSERT(buffer != RT_NULL);
return size;
}
static rt_size_t _ep_read_prepare(rt_uint8_t address, void *buffer, rt_size_t size)
{
HAL_PCD_EP_Receive(&_stm_pcd, address, buffer, size);
return size;
}
static rt_size_t _ep_write(rt_uint8_t address, void *buffer, rt_size_t size)
{
HAL_PCD_EP_Transmit(&_stm_pcd, address, buffer, size);
return size;
}
static rt_err_t _ep0_send_status(void)
{
HAL_PCD_EP_Transmit(&_stm_pcd, 0x00, NULL, 0);
return RT_EOK;
}
static rt_err_t _suspend(void)
{
return RT_EOK;
}
static rt_err_t _wakeup(void)
{
return RT_EOK;
}
static rt_err_t _init(rt_device_t device)
{
PCD_HandleTypeDef *pcd;
/* Set LL Driver parameters */
pcd = (PCD_HandleTypeDef *)device->user_data;
pcd->Instance = USBD_INSTANCE;
memset(&pcd->Init, 0, sizeof pcd->Init);
pcd->Init.dev_endpoints = 8;
pcd->Init.speed = USBD_PCD_SPEED;
pcd->Init.ep0_mps = DEP0CTL_MPS_64;
#if !defined(SOC_SERIES_STM32F1)
pcd->Init.phy_itface = USBD_PCD_PHY_MODULE;
#endif
/* Initialize LL Driver */
HAL_PCD_Init(pcd);
/* USB interrupt Init */
HAL_NVIC_SetPriority(USBD_IRQ_TYPE, 2, 0);
HAL_NVIC_EnableIRQ(USBD_IRQ_TYPE);
#if !defined(SOC_SERIES_STM32F1)
HAL_PCDEx_SetRxFiFo(pcd, 0x80);
HAL_PCDEx_SetTxFiFo(pcd, 0, 0x40);
HAL_PCDEx_SetTxFiFo(pcd, 1, 0x40);
HAL_PCDEx_SetTxFiFo(pcd, 2, 0x40);
HAL_PCDEx_SetTxFiFo(pcd, 3, 0x40);
#else
HAL_PCDEx_PMAConfig(pcd, 0x00, PCD_SNG_BUF, 0x18);
HAL_PCDEx_PMAConfig(pcd, 0x80, PCD_SNG_BUF, 0x58);
HAL_PCDEx_PMAConfig(pcd, 0x81, PCD_SNG_BUF, 0x98);
HAL_PCDEx_PMAConfig(pcd, 0x01, PCD_SNG_BUF, 0x118);
HAL_PCDEx_PMAConfig(pcd, 0x82, PCD_SNG_BUF, 0xD8);
HAL_PCDEx_PMAConfig(pcd, 0x02, PCD_SNG_BUF, 0x158);
HAL_PCDEx_PMAConfig(pcd, 0x83, PCD_SNG_BUF, 0x198);
#endif
HAL_PCD_Start(pcd);
return RT_EOK;
}
const static struct udcd_ops _udc_ops =
{
_set_address,
_set_config,
_ep_set_stall,
_ep_clear_stall,
_ep_enable,
_ep_disable,
_ep_read_prepare,
_ep_read,
_ep_write,
_ep0_send_status,
_suspend,
_wakeup,
};
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops _ops =
{
_init,
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
};
#endif
int stm_usbd_register(void)
{
rt_memset((void *)&_stm_udc, 0, sizeof(struct udcd));
_stm_udc.parent.type = RT_Device_Class_USBDevice;
#ifdef RT_USING_DEVICE_OPS
_stm_udc.parent.ops = &_ops;
#else
_stm_udc.parent.init = _init;
#endif
_stm_udc.parent.user_data = &_stm_pcd;
_stm_udc.ops = &_udc_ops;
/* Register endpoint infomation */
_stm_udc.ep_pool = _ep_pool;
_stm_udc.ep0.id = &_ep_pool[0];
#ifdef BSP_USBD_SPEED_HS
_stm_udc.device_is_hs = RT_TRUE;
#endif
rt_device_register((rt_device_t)&_stm_udc, "usbd", 0);
rt_usb_device_init();
return RT_EOK;
}
INIT_DEVICE_EXPORT(stm_usbd_register);
#endif

254
drivers/drv_usbh.c Normal file
View File

@ -0,0 +1,254 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-10-30 ZYH the first version
* 2019-12-19 tyustli port to stm32 series
*/
#include "drv_usbh.h"
#include "board.h"
#include<rtthread.h>
#include<rtdevice.h>
#ifdef BSP_USING_USBHOST
static HCD_HandleTypeDef stm32_hhcd_fs;
static struct rt_completion urb_completion;
static volatile rt_bool_t connect_status = RT_FALSE;
void OTG_FS_IRQHandler(void)
{
rt_interrupt_enter();
HAL_HCD_IRQHandler(&stm32_hhcd_fs);
rt_interrupt_leave();
}
void HAL_HCD_Connect_Callback(HCD_HandleTypeDef *hhcd)
{
uhcd_t hcd = (uhcd_t)hhcd->pData;
if (!connect_status)
{
connect_status = RT_TRUE;
RT_DEBUG_LOG(RT_DEBUG_USB, ("usb connected\n"));
rt_usbh_root_hub_connect_handler(hcd, OTG_FS_PORT, RT_FALSE);
}
}
void HAL_HCD_Disconnect_Callback(HCD_HandleTypeDef *hhcd)
{
uhcd_t hcd = (uhcd_t)hhcd->pData;
if (connect_status)
{
connect_status = RT_FALSE;
RT_DEBUG_LOG(RT_DEBUG_USB, ("usb disconnnect\n"));
rt_usbh_root_hub_disconnect_handler(hcd, OTG_FS_PORT);
}
}
void HAL_HCD_HC_NotifyURBChange_Callback(HCD_HandleTypeDef *hhcd, uint8_t chnum, HCD_URBStateTypeDef urb_state)
{
rt_completion_done(&urb_completion);
}
static rt_err_t drv_reset_port(rt_uint8_t port)
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("reset port\n"));
HAL_HCD_ResetPort(&stm32_hhcd_fs);
return RT_EOK;
}
static int drv_pipe_xfer(upipe_t pipe, rt_uint8_t token, void *buffer, int nbytes, int timeouts)
{
int timeout = timeouts;
while (1)
{
if (!connect_status)
{
return -1;
}
rt_completion_init(&urb_completion);
HAL_HCD_HC_SubmitRequest(&stm32_hhcd_fs,
pipe->pipe_index,
(pipe->ep.bEndpointAddress & 0x80) >> 7,
pipe->ep.bmAttributes,
token,
buffer,
nbytes,
0);
rt_completion_wait(&urb_completion, timeout);
rt_thread_mdelay(1);
if (HAL_HCD_HC_GetState(&stm32_hhcd_fs, pipe->pipe_index) == HC_NAK)
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("nak\n"));
if (pipe->ep.bmAttributes == USB_EP_ATTR_INT)
{
rt_thread_delay((pipe->ep.bInterval * RT_TICK_PER_SECOND / 1000) > 0 ? (pipe->ep.bInterval * RT_TICK_PER_SECOND / 1000) : 1);
}
HAL_HCD_HC_Halt(&stm32_hhcd_fs, pipe->pipe_index);
HAL_HCD_HC_Init(&stm32_hhcd_fs,
pipe->pipe_index,
pipe->ep.bEndpointAddress,
pipe->inst->address,
USB_OTG_SPEED_FULL,
pipe->ep.bmAttributes,
pipe->ep.wMaxPacketSize);
continue;
}
else if (HAL_HCD_HC_GetState(&stm32_hhcd_fs, pipe->pipe_index) == HC_STALL)
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("stall\n"));
pipe->status = UPIPE_STATUS_STALL;
if (pipe->callback != RT_NULL)
{
pipe->callback(pipe);
}
return -1;
}
else if (HAL_HCD_HC_GetState(&stm32_hhcd_fs, pipe->pipe_index) == URB_ERROR)
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("error\n"));
pipe->status = UPIPE_STATUS_ERROR;
if (pipe->callback != RT_NULL)
{
pipe->callback(pipe);
}
return -1;
}
else if(URB_DONE == HAL_HCD_HC_GetURBState(&stm32_hhcd_fs, pipe->pipe_index))
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("ok\n"));
pipe->status = UPIPE_STATUS_OK;
if (pipe->callback != RT_NULL)
{
pipe->callback(pipe);
}
size_t size = HAL_HCD_HC_GetXferCount(&stm32_hhcd_fs, pipe->pipe_index);
if (pipe->ep.bEndpointAddress & 0x80)
{
return size;
}
else if (pipe->ep.bEndpointAddress & 0x00)
{
return size;
}
return nbytes;
}
continue;
}
}
static rt_uint16_t pipe_index = 0;
static rt_uint8_t drv_get_free_pipe_index(void)
{
rt_uint8_t idx;
for (idx = 1; idx < 16; idx++)
{
if (!(pipe_index & (0x01 << idx)))
{
pipe_index |= (0x01 << idx);
return idx;
}
}
return 0xff;
}
static void drv_free_pipe_index(rt_uint8_t index)
{
pipe_index &= ~(0x01 << index);
}
static rt_err_t drv_open_pipe(upipe_t pipe)
{
pipe->pipe_index = drv_get_free_pipe_index();
HAL_HCD_HC_Init(&stm32_hhcd_fs,
pipe->pipe_index,
pipe->ep.bEndpointAddress,
pipe->inst->address,
USB_OTG_SPEED_FULL,
pipe->ep.bmAttributes,
pipe->ep.wMaxPacketSize);
/* Set DATA0 PID token*/
if (stm32_hhcd_fs.hc[pipe->pipe_index].ep_is_in)
{
stm32_hhcd_fs.hc[pipe->pipe_index].toggle_in = 0;
}
else
{
stm32_hhcd_fs.hc[pipe->pipe_index].toggle_out = 0;
}
return RT_EOK;
}
static rt_err_t drv_close_pipe(upipe_t pipe)
{
HAL_HCD_HC_Halt(&stm32_hhcd_fs, pipe->pipe_index);
drv_free_pipe_index(pipe->pipe_index);
return RT_EOK;
}
static struct uhcd_ops _uhcd_ops =
{
drv_reset_port,
drv_pipe_xfer,
drv_open_pipe,
drv_close_pipe,
};
static rt_err_t stm32_hcd_init(rt_device_t device)
{
HCD_HandleTypeDef *hhcd = (HCD_HandleTypeDef *)device->user_data;
hhcd->Instance = USB_OTG_FS;
hhcd->Init.Host_channels = 8;
hhcd->Init.speed = HCD_SPEED_FULL;
hhcd->Init.dma_enable = DISABLE;
hhcd->Init.phy_itface = HCD_PHY_EMBEDDED;
hhcd->Init.Sof_enable = DISABLE;
RT_ASSERT(HAL_HCD_Init(hhcd) == HAL_OK);
HAL_HCD_Start(hhcd);
#ifdef USBH_USING_CONTROLLABLE_POWER
rt_pin_mode(USBH_POWER_PIN, PIN_MODE_OUTPUT);
rt_pin_write(USBH_POWER_PIN, PIN_LOW);
#endif
return RT_EOK;
}
int stm_usbh_register(void)
{
rt_err_t res = -RT_ERROR;
uhcd_t uhcd = (uhcd_t)rt_malloc(sizeof(struct uhcd));
if (uhcd == RT_NULL)
{
rt_kprintf("uhcd malloc failed\r\n");
return -RT_ERROR;
}
rt_memset((void *)uhcd, 0, sizeof(struct uhcd));
uhcd->parent.type = RT_Device_Class_USBHost;
uhcd->parent.init = stm32_hcd_init;
uhcd->parent.user_data = &stm32_hhcd_fs;
uhcd->ops = &_uhcd_ops;
uhcd->num_ports = OTG_FS_PORT;
stm32_hhcd_fs.pData = uhcd;
res = rt_device_register(&uhcd->parent, "usbh", RT_DEVICE_FLAG_DEACTIVATE);
if (res != RT_EOK)
{
rt_kprintf("register usb host failed res = %d\r\n", res);
return -RT_ERROR;
}
rt_usb_host_init();
return RT_EOK;
}
INIT_DEVICE_EXPORT(stm_usbh_register);
#endif

133
drivers/drv_wdt.c Normal file
View File

@ -0,0 +1,133 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-07 balanceTWK first version
*/
#include <board.h>
#include<rtthread.h>
#include<rtdevice.h>
#ifdef RT_USING_WDT
//#define DRV_DEBUG
#define LOG_TAG "drv.wdt"
#include <drv_log.h>
struct stm32_wdt_obj
{
IWDG_HandleTypeDef hiwdg;
rt_uint16_t is_start;
};
static struct stm32_wdt_obj stm32_wdt;
static struct rt_watchdog_ops ops;
static rt_watchdog_t watchdog;
static rt_err_t wdt_init(rt_watchdog_t *wdt)
{
return RT_EOK;
}
static rt_err_t wdt_control(rt_watchdog_t *wdt, int cmd, void *arg)
{
switch (cmd)
{
/* feed the watchdog */
case RT_DEVICE_CTRL_WDT_KEEPALIVE:
if(HAL_IWDG_Refresh(&stm32_wdt.hiwdg) != HAL_OK)
{
LOG_E("watch dog keepalive fail.");
}
break;
/* set watchdog timeout */
case RT_DEVICE_CTRL_WDT_SET_TIMEOUT:
#if defined(LSI_VALUE)
if(LSI_VALUE)
{
stm32_wdt.hiwdg.Init.Reload = (*((rt_uint32_t*)arg)) * LSI_VALUE / 256 ;
}
else
{
LOG_E("Please define the value of LSI_VALUE!");
}
if(stm32_wdt.hiwdg.Init.Reload > 0xFFF)
{
LOG_E("wdg set timeout parameter too large, please less than %ds",0xFFF * 256 / LSI_VALUE);
return -RT_EINVAL;
}
#else
#error "Please define the value of LSI_VALUE!"
#endif
if(stm32_wdt.is_start)
{
if (HAL_IWDG_Init(&stm32_wdt.hiwdg) != HAL_OK)
{
LOG_E("wdg set timeout failed.");
return -RT_ERROR;
}
}
break;
case RT_DEVICE_CTRL_WDT_GET_TIMEOUT:
#if defined(LSI_VALUE)
if(LSI_VALUE)
{
(*((rt_uint32_t*)arg)) = stm32_wdt.hiwdg.Init.Reload * 256 / LSI_VALUE;
}
else
{
LOG_E("Please define the value of LSI_VALUE!");
}
#else
#error "Please define the value of LSI_VALUE!"
#endif
break;
case RT_DEVICE_CTRL_WDT_START:
if (HAL_IWDG_Init(&stm32_wdt.hiwdg) != HAL_OK)
{
LOG_E("wdt start failed.");
return -RT_ERROR;
}
stm32_wdt.is_start = 1;
break;
default:
LOG_W("This command is not supported.");
return -RT_ERROR;
}
return RT_EOK;
}
int rt_wdt_init(void)
{
#if defined(SOC_SERIES_STM32H7)
stm32_wdt.hiwdg.Instance = IWDG1;
#else
stm32_wdt.hiwdg.Instance = IWDG;
#endif
stm32_wdt.hiwdg.Init.Prescaler = IWDG_PRESCALER_256;
stm32_wdt.hiwdg.Init.Reload = 0x00000FFF;
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7) \
|| defined(SOC_SERIES_STM32H7)
stm32_wdt.hiwdg.Init.Window = 0x00000FFF;
#endif
stm32_wdt.is_start = 0;
ops.init = &wdt_init;
ops.control = &wdt_control;
watchdog.ops = &ops;
/* register watchdog device */
if (rt_hw_watchdog_register(&watchdog, "wdt", RT_DEVICE_FLAG_DEACTIVATE, RT_NULL) != RT_EOK)
{
LOG_E("wdt device register failed.");
return -RT_ERROR;
}
LOG_D("wdt device register success.");
return RT_EOK;
}
INIT_BOARD_EXPORT(rt_wdt_init);
#endif /* RT_USING_WDT */

View File

@ -0,0 +1,87 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-06 zylx first version
*/
#ifndef __ADC_CONFIG_H__
#define __ADC_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BSP_USING_ADC1
#ifndef ADC1_CONFIG
#define ADC1_CONFIG \
{ \
.Instance = ADC1, \
.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4, \
.Init.Resolution = ADC_RESOLUTION_12B, \
.Init.DataAlign = ADC_DATAALIGN_RIGHT, \
.Init.ScanConvMode = DISABLE, \
.Init.EOCSelection = DISABLE, \
.Init.ContinuousConvMode = DISABLE, \
.Init.NbrOfConversion = 1, \
.Init.DiscontinuousConvMode = DISABLE, \
.Init.NbrOfDiscConversion = 0, \
.Init.ExternalTrigConv = ADC_SOFTWARE_START, \
.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE, \
.Init.DMAContinuousRequests = DISABLE, \
}
#endif /* ADC1_CONFIG */
#endif /* BSP_USING_ADC1 */
#ifdef BSP_USING_ADC2
#ifndef ADC2_CONFIG
#define ADC2_CONFIG \
{ \
.Instance = ADC2, \
.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4, \
.Init.Resolution = ADC_RESOLUTION_12B, \
.Init.DataAlign = ADC_DATAALIGN_RIGHT, \
.Init.ScanConvMode = DISABLE, \
.Init.EOCSelection = DISABLE, \
.Init.ContinuousConvMode = DISABLE, \
.Init.NbrOfConversion = 1, \
.Init.DiscontinuousConvMode = DISABLE, \
.Init.NbrOfDiscConversion = 0, \
.Init.ExternalTrigConv = ADC_SOFTWARE_START, \
.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE, \
.Init.DMAContinuousRequests = DISABLE, \
}
#endif /* ADC2_CONFIG */
#endif /* BSP_USING_ADC2 */
#ifdef BSP_USING_ADC3
#ifndef ADC3_CONFIG
#define ADC3_CONFIG \
{ \
.Instance = ADC3, \
.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4, \
.Init.Resolution = ADC_RESOLUTION_12B, \
.Init.DataAlign = ADC_DATAALIGN_RIGHT, \
.Init.ScanConvMode = DISABLE, \
.Init.EOCSelection = DISABLE, \
.Init.ContinuousConvMode = DISABLE, \
.Init.NbrOfConversion = 1, \
.Init.DiscontinuousConvMode = DISABLE, \
.Init.NbrOfDiscConversion = 0, \
.Init.ExternalTrigConv = ADC_SOFTWARE_START, \
.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE, \
.Init.DMAContinuousRequests = DISABLE, \
}
#endif /* ADC3_CONFIG */
#endif /* BSP_USING_ADC3 */
#ifdef __cplusplus
}
#endif
#endif /* __ADC_CONFIG_H__ */

View File

@ -0,0 +1,229 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-01-02 zylx first version
* 2019-01-08 SummerGift clean up the code
*/
#ifndef __DMA_CONFIG_H__
#define __DMA_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
/* DMA1 stream0 */
#if defined(BSP_SPI3_RX_USING_DMA) && !defined(SPI3_RX_DMA_INSTANCE)
#define SPI3_DMA_RX_IRQHandler DMA1_Stream0_IRQHandler
#define SPI3_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI3_RX_DMA_INSTANCE DMA1_Stream0
#define SPI3_RX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI3_RX_DMA_IRQ DMA1_Stream0_IRQn
#elif defined(BSP_UART5_RX_USING_DMA) && !defined(UART5_RX_DMA_INSTANCE)
#define UART5_DMA_RX_IRQHandler DMA1_Stream0_IRQHandler
#define UART5_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART5_RX_DMA_INSTANCE DMA1_Stream0
#define UART5_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART5_RX_DMA_IRQ DMA1_Stream0_IRQn
#endif
/* DMA1 stream1 */
#if defined(BSP_UART3_RX_USING_DMA) && !defined(UART3_RX_DMA_INSTANCE)
#define UART3_DMA_RX_IRQHandler DMA1_Stream1_IRQHandler
#define UART3_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART3_RX_DMA_INSTANCE DMA1_Stream1
#define UART3_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART3_RX_DMA_IRQ DMA1_Stream1_IRQn
#endif
/* DMA1 stream2 */
#if defined(BSP_SPI3_RX_USING_DMA) && !defined(SPI3_RX_DMA_INSTANCE)
#define SPI3_DMA_RX_IRQHandler DMA1_Stream2_IRQHandler
#define SPI3_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI3_RX_DMA_INSTANCE DMA1_Stream2
#define SPI3_RX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI3_RX_DMA_IRQ DMA1_Stream2_IRQn
#elif defined(BSP_UART4_RX_USING_DMA) && !defined(UART4_RX_DMA_INSTANCE)
#define UART4_DMA_RX_IRQHandler DMA1_Stream2_IRQHandler
#define UART4_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART4_RX_DMA_INSTANCE DMA1_Stream2
#define UART4_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART4_RX_DMA_IRQ DMA1_Stream2_IRQn
#endif
/* DMA1 stream3 */
#if defined(BSP_SPI2_RX_USING_DMA) && !defined(SPI2_RX_DMA_INSTANCE)
#define SPI2_DMA_RX_IRQHandler DMA1_Stream3_IRQHandler
#define SPI2_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI2_RX_DMA_INSTANCE DMA1_Stream3
#define SPI2_RX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI2_RX_DMA_IRQ DMA1_Stream3_IRQn
#endif
/* DMA1 stream4 */
#if defined(BSP_SPI2_TX_USING_DMA) && !defined(SPI2_TX_DMA_INSTANCE)
#define SPI2_DMA_TX_IRQHandler DMA1_Stream4_IRQHandler
#define SPI2_TX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI2_TX_DMA_INSTANCE DMA1_Stream4
#define SPI2_TX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI2_TX_DMA_IRQ DMA1_Stream4_IRQn
#endif
/* DMA1 stream5 */
#if defined(BSP_SPI3_TX_USING_DMA) && !defined(SPI3_TX_DMA_INSTANCE)
#define SPI3_DMA_TX_IRQHandler DMA1_Stream5_IRQHandler
#define SPI3_TX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI3_TX_DMA_INSTANCE DMA1_Stream5
#define SPI3_TX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI3_TX_DMA_IRQ DMA1_Stream5_IRQn
#elif defined(BSP_UART2_RX_USING_DMA) && !defined(UART2_RX_DMA_INSTANCE)
#define UART2_DMA_RX_IRQHandler DMA1_Stream5_IRQHandler
#define UART2_RX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define UART2_RX_DMA_INSTANCE DMA1_Stream5
#define UART2_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART2_RX_DMA_IRQ DMA1_Stream5_IRQn
#endif
/* DMA1 stream6 */
/* DMA1 stream7 */
#if defined(BSP_SPI3_TX_USING_DMA) && !defined(SPI3_TX_DMA_INSTANCE)
#define SPI3_DMA_TX_IRQHandler DMA1_Stream7_IRQHandler
#define SPI3_TX_DMA_RCC RCC_AHB1ENR_DMA1EN
#define SPI3_TX_DMA_INSTANCE DMA1_Stream7
#define SPI3_TX_DMA_CHANNEL DMA_CHANNEL_0
#define SPI3_TX_DMA_IRQ DMA1_Stream7_IRQn
#endif
/* DMA2 stream0 */
#if defined(BSP_SPI1_RX_USING_DMA) && !defined(SPI1_RX_DMA_INSTANCE)
#define SPI1_DMA_RX_IRQHandler DMA2_Stream0_IRQHandler
#define SPI1_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI1_RX_DMA_INSTANCE DMA2_Stream0
#define SPI1_RX_DMA_CHANNEL DMA_CHANNEL_3
#define SPI1_RX_DMA_IRQ DMA2_Stream0_IRQn
#elif defined(BSP_SPI4_RX_USING_DMA) && !defined(SPI4_RX_DMA_INSTANCE)
#define SPI4_DMA_RX_IRQHandler DMA2_Stream0_IRQHandler
#define SPI4_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI4_RX_DMA_INSTANCE DMA2_Stream0
#define SPI4_RX_DMA_CHANNEL DMA_CHANNEL_4
#define SPI4_RX_DMA_IRQ DMA2_Stream0_IRQn
#endif
/* DMA2 stream1 */
#if defined(BSP_SPI4_TX_USING_DMA) && !defined(SPI4_TX_DMA_INSTANCE)
#define SPI4_DMA_TX_IRQHandler DMA2_Stream1_IRQHandler
#define SPI4_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI4_TX_DMA_INSTANCE DMA2_Stream1
#define SPI4_TX_DMA_CHANNEL DMA_CHANNEL_4
#define SPI4_TX_DMA_IRQ DMA2_Stream1_IRQn
#endif
/* DMA2 stream2 */
#if defined(BSP_SPI1_RX_USING_DMA) && !defined(SPI1_RX_DMA_INSTANCE)
#define SPI1_DMA_RX_IRQHandler DMA2_Stream2_IRQHandler
#define SPI1_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI1_RX_DMA_INSTANCE DMA2_Stream2
#define SPI1_RX_DMA_CHANNEL DMA_CHANNEL_3
#define SPI1_RX_DMA_IRQ DMA2_Stream2_IRQn
#elif defined(BSP_UART1_RX_USING_DMA) && !defined(UART1_RX_DMA_INSTANCE)
#define UART1_DMA_RX_IRQHandler DMA2_Stream2_IRQHandler
#define UART1_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define UART1_RX_DMA_INSTANCE DMA2_Stream2
#define UART1_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART1_RX_DMA_IRQ DMA2_Stream2_IRQn
#elif defined(BSP_QSPI_USING_DMA) && !defined(QSPI_DMA_INSTANCE)
#define QSPI_DMA_IRQHandler DMA2_Stream2_IRQHandler
#define QSPI_DMA_RCC RCC_AHB1ENR_DMA2EN
#define QSPI_DMA_INSTANCE DMA2_Stream2
#define QSPI_DMA_CHANNEL DMA_CHANNEL_11
#define QSPI_DMA_IRQ DMA2_Stream2_IRQn
#endif
/* DMA2 stream3 */
#if defined(BSP_SPI5_RX_USING_DMA) && !defined(SPI5_RX_DMA_INSTANCE)
#define SPI5_DMA_RX_IRQHandler DMA2_Stream3_IRQHandler
#define SPI5_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI5_RX_DMA_INSTANCE DMA2_Stream3
#define SPI5_RX_DMA_CHANNEL DMA_CHANNEL_2
#define SPI5_RX_DMA_IRQ DMA2_Stream3_IRQn
#elif defined(BSP_SPI1_TX_USING_DMA) && !defined(SPI1_TX_DMA_INSTANCE)
#define SPI1_DMA_TX_IRQHandler DMA2_Stream3_IRQHandler
#define SPI1_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI1_TX_DMA_INSTANCE DMA2_Stream3
#define SPI1_TX_DMA_CHANNEL DMA_CHANNEL_3
#define SPI1_TX_DMA_IRQ DMA2_Stream3_IRQn
#elif defined(BSP_SPI4_RX_USING_DMA) && !defined(SPI4_RX_DMA_INSTANCE)
#define SPI4_DMA_RX_IRQHandler DMA2_Stream3_IRQHandler
#define SPI4_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI4_RX_DMA_INSTANCE DMA2_Stream3
#define SPI4_RX_DMA_CHANNEL DMA_CHANNEL_5
#define SPI4_RX_DMA_IRQ DMA2_Stream3_IRQn
#endif
/* DMA2 stream4 */
#if defined(BSP_SPI5_TX_USING_DMA) && !defined(SPI5_TX_DMA_INSTANCE)
#define SPI5_DMA_TX_IRQHandler DMA2_Stream4_IRQHandler
#define SPI5_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI5_TX_DMA_INSTANCE DMA2_Stream4
#define SPI5_TX_DMA_CHANNEL DMA_CHANNEL_2
#define SPI5_TX_DMA_IRQ DMA2_Stream4_IRQn
#elif defined(BSP_SPI4_TX_USING_DMA) && !defined(SPI4_TX_DMA_INSTANCE)
#define SPI4_DMA_TX_IRQHandler DMA2_Stream4_IRQHandler
#define SPI4_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI4_TX_DMA_INSTANCE DMA2_Stream4
#define SPI4_TX_DMA_CHANNEL DMA_CHANNEL_5
#define SPI4_TX_DMA_IRQ DMA2_Stream4_IRQn
#endif
/* DMA2 stream5 */
#if defined(BSP_SPI1_TX_USING_DMA) && !defined(SPI1_TX_DMA_INSTANCE)
#define SPI1_DMA_TX_IRQHandler DMA2_Stream5_IRQHandler
#define SPI1_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI1_TX_DMA_INSTANCE DMA2_Stream5
#define SPI1_TX_DMA_CHANNEL DMA_CHANNEL_3
#define SPI1_TX_DMA_IRQ DMA2_Stream5_IRQn
#elif defined(BSP_UART1_RX_USING_DMA) && !defined(UART1_RX_DMA_INSTANCE)
#define UART1_DMA_RX_IRQHandler DMA2_Stream5_IRQHandler
#define UART1_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define UART1_RX_DMA_INSTANCE DMA2_Stream5
#define UART1_RX_DMA_CHANNEL DMA_CHANNEL_4
#define UART1_RX_DMA_IRQ DMA2_Stream5_IRQn
#elif defined(BSP_SPI5_RX_USING_DMA) && !defined(SPI5_RX_DMA_INSTANCE)
#define SPI5_DMA_RX_IRQHandler DMA2_Stream5_IRQHandler
#define SPI5_RX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI5_RX_DMA_INSTANCE DMA2_Stream5
#define SPI5_RX_DMA_CHANNEL DMA_CHANNEL_7
#define SPI5_RX_DMA_IRQ DMA2_Stream5_IRQn
#endif
/* DMA2 stream6 */
#if defined(BSP_SPI5_TX_USING_DMA) && !defined(SPI5_TX_DMA_INSTANCE)
#define SPI5_DMA_TX_IRQHandler DMA2_Stream6_IRQHandler
#define SPI5_TX_DMA_RCC RCC_AHB1ENR_DMA2EN
#define SPI5_TX_DMA_INSTANCE DMA2_Stream6
#define SPI5_TX_DMA_CHANNEL DMA_CHANNEL_7
#define SPI5_TX_DMA_IRQ DMA2_Stream6_IRQn
#endif
/* DMA2 stream7 */
#if defined(BSP_QSPI_USING_DMA) && !defined(QSPI_DMA_INSTANCE)
#define QSPI_DMA_IRQHandler DMA2_Stream7_IRQHandler
#define QSPI_DMA_RCC RCC_AHB1ENR_DMA2EN
#define QSPI_DMA_INSTANCE DMA2_Stream7
#define QSPI_DMA_CHANNEL DMA_CHANNEL_3
#define QSPI_DMA_IRQ DMA2_Stream7_IRQn
#endif
#ifdef __cplusplus
}
#endif
#endif /* __DMA_CONFIG_H__ */

View File

@ -0,0 +1,68 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-13 zylx first version
*/
#ifndef __PWM_CONFIG_H__
#define __PWM_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BSP_USING_PWM2
#ifndef PWM2_CONFIG
#define PWM2_CONFIG \
{ \
.tim_handle.Instance = TIM2, \
.name = "pwm2", \
.channel = 0 \
}
#endif /* PWM2_CONFIG */
#endif /* BSP_USING_PWM2 */
#ifdef BSP_USING_PWM3
#ifndef PWM3_CONFIG
#define PWM3_CONFIG \
{ \
.tim_handle.Instance = TIM3, \
.name = "pwm3", \
.channel = 0 \
}
#endif /* PWM3_CONFIG */
#endif /* BSP_USING_PWM3 */
#ifdef BSP_USING_PWM4
#ifndef PWM4_CONFIG
#define PWM4_CONFIG \
{ \
.tim_handle.Instance = TIM4, \
.name = "pwm4", \
.channel = 0 \
}
#endif /* PWM4_CONFIG */
#endif /* BSP_USING_PWM4 */
#ifdef BSP_USING_PWM5
#ifndef PWM5_CONFIG
#define PWM5_CONFIG \
{ \
.tim_handle.Instance = TIM5, \
.name = "pwm5", \
.channel = 0 \
}
#endif /* PWM5_CONFIG */
#endif /* BSP_USING_PWM5 */
#ifdef __cplusplus
}
#endif
#endif /* __PWM_CONFIG_H__ */

View File

@ -0,0 +1,56 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-22 zylx first version
*/
#ifndef __QSPI_CONFIG_H__
#define __QSPI_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BSP_USING_QSPI
#ifndef QSPI_BUS_CONFIG
#define QSPI_BUS_CONFIG \
{ \
.Instance = QUADSPI, \
.Init.FifoThreshold = 4, \
.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE, \
.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_4_CYCLE, \
}
#endif /* QSPI_BUS_CONFIG */
#endif /* BSP_USING_QSPI */
#ifdef BSP_QSPI_USING_DMA
#ifndef QSPI_DMA_CONFIG
#define QSPI_DMA_CONFIG \
{ \
.Instance = QSPI_DMA_INSTANCE, \
.Init.Channel = QSPI_DMA_CHANNEL, \
.Init.Direction = DMA_PERIPH_TO_MEMORY, \
.Init.PeriphInc = DMA_PINC_DISABLE, \
.Init.MemInc = DMA_MINC_ENABLE, \
.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE, \
.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE, \
.Init.Mode = DMA_NORMAL, \
.Init.Priority = DMA_PRIORITY_LOW \
}
#endif /* QSPI_DMA_CONFIG */
#endif /* BSP_QSPI_USING_DMA */
#define QSPI_IRQn QUADSPI_IRQn
#define QSPI_IRQHandler QUADSPI_IRQHandler
#ifdef __cplusplus
}
#endif
#endif /* __QSPI_CONFIG_H__ */

View File

@ -0,0 +1,44 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-13 BalanceTWK first version
*/
#ifndef __SDIO_CONFIG_H__
#define __SDIO_CONFIG_H__
#include <rtthread.h>
#include "stm32h7xx_hal.h"
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BSP_USING_SDIO
#define SDIO_BUS_CONFIG \
{ \
.Instance = SDMMC1, \
.dma_rx.dma_rcc = RCC_AHB1ENR_DMA2EN, \
.dma_tx.dma_rcc = RCC_AHB1ENR_DMA2EN, \
.dma_rx.Instance = DMA2_Stream3, \
.dma_rx.channel = DMA_CHANNEL_4, \
.dma_rx.dma_irq = DMA2_Stream3_IRQn, \
.dma_tx.Instance = DMA2_Stream6, \
.dma_tx.channel = DMA_CHANNEL_4, \
.dma_tx.dma_irq = DMA2_Stream6_IRQn, \
}
#endif
#ifdef __cplusplus
}
#endif
#endif /*__SDIO_CONFIG_H__ */

View File

@ -0,0 +1,194 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-06 SummerGift first version
*/
#ifndef __SPI_CONFIG_H__
#define __SPI_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifdef BSP_USING_SPI1
#ifndef SPI1_BUS_CONFIG
#define SPI1_BUS_CONFIG \
{ \
.Instance = SPI1, \
.bus_name = "spi1", \
}
#endif /* SPI1_BUS_CONFIG */
#endif /* BSP_USING_SPI1 */
#ifdef BSP_SPI1_TX_USING_DMA
#ifndef SPI1_TX_DMA_CONFIG
#define SPI1_TX_DMA_CONFIG \
{ \
.dma_rcc = SPI1_TX_DMA_RCC, \
.Instance = SPI1_TX_DMA_INSTANCE, \
.channel = SPI1_TX_DMA_CHANNEL, \
.dma_irq = SPI1_TX_DMA_IRQ, \
}
#endif /* SPI1_TX_DMA_CONFIG */
#endif /* BSP_SPI1_TX_USING_DMA */
#ifdef BSP_SPI1_RX_USING_DMA
#ifndef SPI1_RX_DMA_CONFIG
#define SPI1_RX_DMA_CONFIG \
{ \
.dma_rcc = SPI1_RX_DMA_RCC, \
.Instance = SPI1_RX_DMA_INSTANCE, \
.channel = SPI1_RX_DMA_CHANNEL, \
.dma_irq = SPI1_RX_DMA_IRQ, \
}
#endif /* SPI1_RX_DMA_CONFIG */
#endif /* BSP_SPI1_RX_USING_DMA */
#ifdef BSP_USING_SPI2
#ifndef SPI2_BUS_CONFIG
#define SPI2_BUS_CONFIG \
{ \
.Instance = SPI2, \
.bus_name = "spi2", \
}
#endif /* SPI2_BUS_CONFIG */
#endif /* BSP_USING_SPI2 */
#ifdef BSP_SPI2_TX_USING_DMA
#ifndef SPI2_TX_DMA_CONFIG
#define SPI2_TX_DMA_CONFIG \
{ \
.dma_rcc = SPI2_TX_DMA_RCC, \
.Instance = SPI2_TX_DMA_INSTANCE, \
.channel = SPI2_TX_DMA_CHANNEL, \
.dma_irq = SPI2_TX_DMA_IRQ, \
}
#endif /* SPI2_TX_DMA_CONFIG */
#endif /* BSP_SPI2_TX_USING_DMA */
#ifdef BSP_SPI2_RX_USING_DMA
#ifndef SPI2_RX_DMA_CONFIG
#define SPI2_RX_DMA_CONFIG \
{ \
.dma_rcc = SPI2_RX_DMA_RCC, \
.Instance = SPI2_RX_DMA_INSTANCE, \
.channel = SPI2_RX_DMA_CHANNEL, \
.dma_irq = SPI2_RX_DMA_IRQ, \
}
#endif /* SPI2_RX_DMA_CONFIG */
#endif /* BSP_SPI2_RX_USING_DMA */
#ifdef BSP_USING_SPI3
#ifndef SPI3_BUS_CONFIG
#define SPI3_BUS_CONFIG \
{ \
.Instance = SPI3, \
.bus_name = "spi3", \
}
#endif /* SPI3_BUS_CONFIG */
#endif /* BSP_USING_SPI3 */
#ifdef BSP_SPI3_TX_USING_DMA
#ifndef SPI3_TX_DMA_CONFIG
#define SPI3_TX_DMA_CONFIG \
{ \
.dma_rcc = SPI3_TX_DMA_RCC, \
.Instance = SPI3_TX_DMA_INSTANCE, \
.channel = SPI3_TX_DMA_CHANNEL, \
.dma_irq = SPI3_TX_DMA_IRQ, \
}
#endif /* SPI3_TX_DMA_CONFIG */
#endif /* BSP_SPI3_TX_USING_DMA */
#ifdef BSP_SPI3_RX_USING_DMA
#ifndef SPI3_RX_DMA_CONFIG
#define SPI3_RX_DMA_CONFIG \
{ \
.dma_rcc = SPI3_RX_DMA_RCC, \
.Instance = SPI3_RX_DMA_INSTANCE, \
.channel = SPI3_RX_DMA_CHANNEL, \
.dma_irq = SPI3_RX_DMA_IRQ, \
}
#endif /* SPI3_RX_DMA_CONFIG */
#endif /* BSP_SPI3_RX_USING_DMA */
#ifdef BSP_USING_SPI4
#ifndef SPI4_BUS_CONFIG
#define SPI4_BUS_CONFIG \
{ \
.Instance = SPI4, \
.bus_name = "spi4", \
}
#endif /* SPI4_BUS_CONFIG */
#endif /* BSP_USING_SPI4 */
#ifdef BSP_SPI4_TX_USING_DMA
#ifndef SPI4_TX_DMA_CONFIG
#define SPI4_TX_DMA_CONFIG \
{ \
.dma_rcc = SPI4_TX_DMA_RCC, \
.Instance = SPI4_TX_DMA_INSTANCE, \
.channel = SPI4_TX_DMA_CHANNEL, \
.dma_irq = SPI4_TX_DMA_IRQ, \
}
#endif /* SPI4_TX_DMA_CONFIG */
#endif /* BSP_SPI4_TX_USING_DMA */
#ifdef BSP_SPI4_RX_USING_DMA
#ifndef SPI4_RX_DMA_CONFIG
#define SPI4_RX_DMA_CONFIG \
{ \
.dma_rcc = SPI4_RX_DMA_RCC, \
.Instance = SPI4_RX_DMA_INSTANCE, \
.channel = SPI4_RX_DMA_CHANNEL, \
.dma_irq = SPI4_RX_DMA_IRQ, \
}
#endif /* SPI4_RX_DMA_CONFIG */
#endif /* BSP_SPI4_RX_USING_DMA */
#ifdef BSP_USING_SPI5
#ifndef SPI5_BUS_CONFIG
#define SPI5_BUS_CONFIG \
{ \
.Instance = SPI5, \
.bus_name = "spi5", \
}
#endif /* SPI5_BUS_CONFIG */
#endif /* BSP_USING_SPI5 */
#ifdef BSP_SPI5_TX_USING_DMA
#ifndef SPI5_TX_DMA_CONFIG
#define SPI5_TX_DMA_CONFIG \
{ \
.dma_rcc = SPI5_TX_DMA_RCC, \
.Instance = SPI5_TX_DMA_INSTANCE, \
.channel = SPI5_TX_DMA_CHANNEL, \
.dma_irq = SPI5_TX_DMA_IRQ, \
}
#endif /* SPI5_TX_DMA_CONFIG */
#endif /* BSP_SPI5_TX_USING_DMA */
#ifdef BSP_SPI5_RX_USING_DMA
#ifndef SPI5_RX_DMA_CONFIG
#define SPI5_RX_DMA_CONFIG \
{ \
.dma_rcc = SPI5_RX_DMA_RCC, \
.Instance = SPI5_RX_DMA_INSTANCE, \
.channel = SPI5_RX_DMA_CHANNEL, \
.dma_irq = SPI5_RX_DMA_IRQ, \
}
#endif /* SPI5_RX_DMA_CONFIG */
#endif /* BSP_SPI5_RX_USING_DMA */
#ifdef __cplusplus
}
#endif
#endif /*__SPI_CONFIG_H__ */

View File

@ -0,0 +1,67 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-11 zylx first version
*/
#ifndef __TIM_CONFIG_H__
#define __TIM_CONFIG_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef TIM_DEV_INFO_CONFIG
#define TIM_DEV_INFO_CONFIG \
{ \
.maxfreq = 1000000, \
.minfreq = 3000, \
.maxcnt = 0xFFFF, \
.cntmode = HWTIMER_CNTMODE_UP, \
}
#endif /* TIM_DEV_INFO_CONFIG */
#ifdef BSP_USING_TIM11
#ifndef TIM11_CONFIG
#define TIM11_CONFIG \
{ \
.tim_handle.Instance = TIM11, \
.tim_irqn = TIM1_TRG_COM_TIM11_IRQn, \
.name = "timer11", \
}
#endif /* TIM11_CONFIG */
#endif /* BSP_USING_TIM11 */
#ifdef BSP_USING_TIM13
#ifndef TIM13_CONFIG
#define TIM13_CONFIG \
{ \
.tim_handle.Instance = TIM13, \
.tim_irqn = TIM8_UP_TIM13_IRQn, \
.name = "timer13", \
}
#endif /* TIM13_CONFIG */
#endif /* BSP_USING_TIM13 */
#ifdef BSP_USING_TIM14
#ifndef TIM14_CONFIG
#define TIM14_CONFIG \
{ \
.tim_handle.Instance = TIM14, \
.tim_irqn = TIM8_TRG_COM_TIM14_IRQn, \
.name = "timer14", \
}
#endif /* TIM14_CONFIG */
#endif /* BSP_USING_TIM14 */
#ifdef __cplusplus
}
#endif
#endif /* __TIM_CONFIG_H__ */

View File

@ -0,0 +1,323 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-10-30 SummerGift first version
* 2019-01-03 zylx modify dma support
*/
#ifndef __UART_CONFIG_H__
#define __UART_CONFIG_H__
#include <rtthread.h>
#include <board.h>
#ifdef __cplusplus
extern "C" {
#endif
#if defined(BSP_USING_UART1)
#ifndef UART1_CONFIG
#define UART1_CONFIG \
{ \
.name = "uart1", \
.Instance = USART1, \
.irq_type = USART1_IRQn, \
.tx_pin_name = BSP_UART1_TX_PIN, \
.rx_pin_name = BSP_UART1_RX_PIN, \
}
#endif /* UART1_CONFIG */
#if defined(BSP_UART1_RX_USING_DMA)
#ifndef UART1_DMA_RX_CONFIG
#define UART1_DMA_RX_CONFIG \
{ \
.Instance = UART1_RX_DMA_INSTANCE, \
.channel = UART1_RX_DMA_CHANNEL, \
.dma_rcc = UART1_RX_DMA_RCC, \
.dma_irq = UART1_RX_DMA_IRQ, \
}
#endif /* UART1_DMA_RX_CONFIG */
#endif /* BSP_UART1_RX_USING_DMA */
#if defined(BSP_UART1_TX_USING_DMA)
#ifndef UART1_DMA_TX_CONFIG
#define UART1_DMA_TX_CONFIG \
{ \
.Instance = UART1_TX_DMA_INSTANCE, \
.channel = UART1_TX_DMA_CHANNEL, \
.dma_rcc = UART1_TX_DMA_RCC, \
.dma_irq = UART1_TX_DMA_IRQ, \
}
#endif /* UART1_DMA_TX_CONFIG */
#endif /* BSP_UART1_TX_USING_DMA */
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
#ifndef UART2_CONFIG
#define UART2_CONFIG \
{ \
.name = "uart2", \
.Instance = USART2, \
.irq_type = USART2_IRQn, \
.tx_pin_name = BSP_UART2_TX_PIN, \
.rx_pin_name = BSP_UART2_RX_PIN, \
}
#endif /* UART2_CONFIG */
#if defined(BSP_UART2_RX_USING_DMA)
#ifndef UART2_DMA_RX_CONFIG
#define UART2_DMA_RX_CONFIG \
{ \
.Instance = UART2_RX_DMA_INSTANCE, \
.channel = UART2_RX_DMA_CHANNEL, \
.dma_rcc = UART2_RX_DMA_RCC, \
.dma_irq = UART2_RX_DMA_IRQ, \
}
#endif /* UART2_DMA_RX_CONFIG */
#endif /* BSP_UART2_RX_USING_DMA */
#if defined(BSP_UART2_TX_USING_DMA)
#ifndef UART2_DMA_TX_CONFIG
#define UART2_DMA_TX_CONFIG \
{ \
.Instance = UART2_TX_DMA_INSTANCE, \
.channel = UART2_TX_DMA_CHANNEL, \
.dma_rcc = UART2_TX_DMA_RCC, \
.dma_irq = UART2_TX_DMA_IRQ, \
}
#endif /* UART2_DMA_TX_CONFIG */
#endif /* BSP_UART2_TX_USING_DMA */
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
#ifndef UART3_CONFIG
#define UART3_CONFIG \
{ \
.name = "uart3", \
.Instance = USART3, \
.irq_type = USART3_IRQn, \
.tx_pin_name = BSP_UART3_TX_PIN, \
.rx_pin_name = BSP_UART3_RX_PIN, \
}
#endif /* UART3_CONFIG */
#if defined(BSP_UART3_RX_USING_DMA)
#ifndef UART3_DMA_RX_CONFIG
#define UART3_DMA_RX_CONFIG \
{ \
.Instance = UART3_RX_DMA_INSTANCE, \
.channel = UART3_RX_DMA_CHANNEL, \
.dma_rcc = UART3_RX_DMA_RCC, \
.dma_irq = UART3_RX_DMA_IRQ, \
}
#endif /* UART3_DMA_RX_CONFIG */
#endif /* BSP_UART3_RX_USING_DMA */
#if defined(BSP_UART3_TX_USING_DMA)
#ifndef UART3_DMA_TX_CONFIG
#define UART3_DMA_TX_CONFIG \
{ \
.Instance = UART3_TX_DMA_INSTANCE, \
.channel = UART3_TX_DMA_CHANNEL, \
.dma_rcc = UART3_TX_DMA_RCC, \
.dma_irq = UART3_TX_DMA_IRQ, \
}
#endif /* UART3_DMA_TX_CONFIG */
#endif /* BSP_UART3_TX_USING_DMA */
#endif /* BSP_USING_UART3 */
#if defined(BSP_USING_UART4)
#ifndef UART4_CONFIG
#define UART4_CONFIG \
{ \
.name = "uart4", \
.Instance = UART4, \
.irq_type = UART4_IRQn, \
.tx_pin_name = BSP_UART4_TX_PIN, \
.rx_pin_name = BSP_UART4_RX_PIN, \
}
#endif /* UART4_CONFIG */
#if defined(BSP_UART4_RX_USING_DMA)
#ifndef UART4_DMA_RX_CONFIG
#define UART4_DMA_RX_CONFIG \
{ \
.Instance = UART4_RX_DMA_INSTANCE, \
.channel = UART4_RX_DMA_CHANNEL, \
.dma_rcc = UART4_RX_DMA_RCC, \
.dma_irq = UART4_RX_DMA_IRQ, \
}
#endif /* UART4_DMA_RX_CONFIG */
#endif /* BSP_UART4_RX_USING_DMA */
#if defined(BSP_UART4_TX_USING_DMA)
#ifndef UART4_DMA_TX_CONFIG
#define UART4_DMA_TX_CONFIG \
{ \
.Instance = UART4_TX_DMA_INSTANCE, \
.channel = UART4_TX_DMA_CHANNEL, \
.dma_rcc = UART4_TX_DMA_RCC, \
.dma_irq = UART4_TX_DMA_IRQ, \
}
#endif /* UART4_DMA_TX_CONFIG */
#endif /* BSP_UART4_RX_USING_DMA */
#endif /* BSP_USING_UART4 */
#if defined(BSP_USING_UART5)
#ifndef UART5_CONFIG
#define UART5_CONFIG \
{ \
.name = "uart5", \
.Instance = UART5, \
.irq_type = UART5_IRQn, \
.tx_pin_name = BSP_UART5_TX_PIN, \
.rx_pin_name = BSP_UART5_RX_PIN, \
}
#endif /* UART5_CONFIG */
#if defined(BSP_UART5_RX_USING_DMA)
#ifndef UART5_DMA_RX_CONFIG
#define UART5_DMA_RX_CONFIG \
{ \
.Instance = UART5_RX_DMA_INSTANCE, \
.channel = UART5_RX_DMA_CHANNEL, \
.dma_rcc = UART5_RX_DMA_RCC, \
.dma_irq = UART5_RX_DMA_IRQ, \
}
#endif /* UART5_DMA_RX_CONFIG */
#endif /* BSP_UART5_RX_USING_DMA */
#if defined(BSP_UART5_TX_USING_DMA)
#ifndef UART5_DMA_TX_CONFIG
#define UART5_DMA_TX_CONFIG \
{ \
.Instance = UART5_TX_DMA_INSTANCE, \
.channel = UART5_TX_DMA_CHANNEL, \
.dma_rcc = UART5_TX_DMA_RCC, \
.dma_irq = UART5_TX_DMA_IRQ, \
}
#endif /* UART5_DMA_TX_CONFIG */
#endif /* BSP_UART5_TX_USING_DMA */
#endif /* BSP_USING_UART5 */
#if defined(BSP_USING_UART6)
#ifndef UART6_CONFIG
#define UART6_CONFIG \
{ \
.name = "uart6", \
.Instance = USART6, \
.irq_type = USART6_IRQn, \
.tx_pin_name = BSP_UART6_TX_PIN, \
.rx_pin_name = BSP_UART6_RX_PIN, \
}
#endif /* UART6_CONFIG */
#if defined(BSP_UART6_RX_USING_DMA)
#ifndef UART6_DMA_RX_CONFIG
#define UART6_DMA_RX_CONFIG \
{ \
.Instance = UART6_RX_DMA_INSTANCE, \
.channel = UART6_RX_DMA_CHANNEL, \
.dma_rcc = UART6_RX_DMA_RCC, \
.dma_irq = UART6_RX_DMA_IRQ, \
}
#endif /* UART6_DMA_RX_CONFIG */
#endif /* BSP_UART6_RX_USING_DMA */
#if defined(BSP_UART6_TX_USING_DMA)
#ifndef UART6_DMA_TX_CONFIG
#define UART6_DMA_TX_CONFIG \
{ \
.Instance = UART6_TX_DMA_INSTANCE, \
.channel = UART6_TX_DMA_CHANNEL, \
.dma_rcc = UART6_TX_DMA_RCC, \
.dma_irq = UART6_TX_DMA_IRQ, \
}
#endif /* UART6_DMA_TX_CONFIG */
#endif /* BSP_UART6_TX_USING_DMA */
#endif /* BSP_USING_UART6 */
#if defined(BSP_USING_UART7)
#ifndef UART7_CONFIG
#define UART7_CONFIG \
{ \
.name = "uart7", \
.Instance = UART7, \
.irq_type = UART7_IRQn, \
.tx_pin_name = BSP_UART7_TX_PIN, \
.rx_pin_name = BSP_UART7_RX_PIN, \
}
#endif /* UART7_CONFIG */
#if defined(BSP_UART7_RX_USING_DMA)
#ifndef UART7_DMA_RX_CONFIG
#define UART7_DMA_RX_CONFIG \
{ \
.Instance = UART7_RX_DMA_INSTANCE, \
.channel = UART7_RX_DMA_CHANNEL, \
.dma_rcc = UART7_RX_DMA_RCC, \
.dma_irq = UART7_RX_DMA_IRQ, \
}
#endif /* UART7_DMA_RX_CONFIG */
#endif /* BSP_UART7_RX_USING_DMA */
#if defined(BSP_UART7_TX_USING_DMA)
#ifndef UART7_DMA_TX_CONFIG
#define UART7_DMA_TX_CONFIG \
{ \
.Instance = UART7_TX_DMA_INSTANCE, \
.channel = UART7_TX_DMA_CHANNEL, \
.dma_rcc = UART7_TX_DMA_RCC, \
.dma_irq = UART7_TX_DMA_IRQ, \
}
#endif /* UART7_DMA_TX_CONFIG */
#endif /* BSP_UART7_TX_USING_DMA */
#endif /* BSP_USING_UART7 */
#if defined(BSP_USING_UART8)
#ifndef UART8_CONFIG
#define UART8_CONFIG \
{ \
.name = "uart8", \
.Instance = UART8, \
.irq_type = UART8_IRQn, \
.tx_pin_name = BSP_UART8_TX_PIN, \
.rx_pin_name = BSP_UART8_RX_PIN, \
}
#endif /* UART8_CONFIG */
#if defined(BSP_UART8_RX_USING_DMA)
#ifndef UART8_DMA_RX_CONFIG
#define UART8_DMA_RX_CONFIG \
{ \
.Instance = UART8_RX_DMA_INSTANCE, \
.channel = UART8_RX_DMA_CHANNEL, \
.dma_rcc = UART8_RX_DMA_RCC, \
.dma_irq = UART8_RX_DMA_IRQ, \
}
#endif /* UART8_DMA_RX_CONFIG */
#endif /* BSP_UART8_RX_USING_DMA */
#if defined(BSP_UART8_TX_USING_DMA)
#ifndef UART8_DMA_TX_CONFIG
#define UART8_DMA_TX_CONFIG \
{ \
.Instance = UART8_TX_DMA_INSTANCE, \
.channel = UART8_TX_DMA_CHANNEL, \
.dma_rcc = UART8_TX_DMA_RCC, \
.dma_irq = UART8_TX_DMA_IRQ, \
}
#endif /* UART8_DMA_TX_CONFIG */
#endif /* BSP_UART8_TX_USING_DMA */
#endif /* BSP_USING_UART8 */
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,42 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-04-10 ZYH first version
* 2019-10-27 flybreak Compatible with the HS
*/
#ifndef __USBD_CONFIG_H__
#define __USBD_CONFIG_H__
#include <rtconfig.h>
#ifdef BSP_USBD_TYPE_HS
#define USBD_IRQ_TYPE OTG_HS_IRQn
#define USBD_IRQ_HANDLER OTG_HS_IRQHandler
#define USBD_INSTANCE USB_OTG_HS
#else
#define USBD_IRQ_TYPE OTG_FS_IRQn
#define USBD_IRQ_HANDLER OTG_FS_IRQHandler
#define USBD_INSTANCE USB_OTG_FS
#endif
#ifdef BSP_USBD_SPEED_HS
#define USBD_PCD_SPEED PCD_SPEED_HIGH
#elif BSP_USBD_SPEED_HSINFS
#define USBD_PCD_SPEED PCD_SPEED_HIGH_IN_FULL
#else
#define USBD_PCD_SPEED PCD_SPEED_FULL
#endif
#ifdef BSP_USBD_PHY_ULPI
#define USBD_PCD_PHY_MODULE PCD_PHY_ULPI
#elif BSP_USBD_PHY_UTMI
#define USBD_PCD_PHY_MODULE PCD_PHY_UTMI
#else
#define USBD_PCD_PHY_MODULE PCD_PHY_EMBEDDED
#endif
#endif

View File

@ -0,0 +1,59 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-7 SummerGift first version
*/
#ifndef __DRV_COMMON_H__
#define __DRV_COMMON_H__
#include <rtthread.h>
#include <rthw.h>
#include <board.h>
#include <stm32h7xx.h>
#ifdef __cplusplus
extern "C"
{
#endif
void _Error_Handler(char *s, int num);
#ifndef Error_Handler
#define Error_Handler() _Error_Handler(__FILE__, __LINE__)
#endif
#define DMA_NOT_AVAILABLE ((DMA_INSTANCE_TYPE *)0xFFFFFFFFU)
#define __STM32_PORT(port) GPIO##port##_BASE
#define GET_PIN(PORTx,PIN) (rt_base_t)((16 * ( ((rt_base_t)__STM32_PORT(PORTx) - (rt_base_t)GPIOA_BASE)/(0x0400UL) )) + PIN)
#define STM32_FLASH_START_ADRESS ROM_START
#define STM32_FLASH_SIZE ROM_SIZE
#define STM32_FLASH_END_ADDRESS ROM_END
#define STM32_SRAM1_SIZE RAM_SIZE
#define STM32_SRAM1_START RAM_START
#define STM32_SRAM1_END RAM_END
#if defined(__CC_ARM) || defined(__CLANG_ARM)
extern int Image$RW_IRAM1$ZI$Limit;
#define HEAP_BEGIN ((void *)&Image$RW_IRAM1$ZI$Limit)
#elif __ICCARM__
#pragma section="CSTACK"
#define HEAP_BEGIN (__segment_end("CSTACK"))
#else
extern int __bss_end;
#define HEAP_BEGIN ((void *)&__bss_end)
#endif
#define HEAP_END STM32_SRAM1_END
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,122 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-10-30 SummerGift first version
*/
#ifndef __DRV_CONFIG_H__
#define __DRV_CONFIG_H__
#include <board.h>
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
#if defined(SOC_SERIES_STM32F0)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/tim_config.h"
#include "config/pwm_config.h"
#include "config/adc_config.h"
#elif defined(SOC_SERIES_STM32F1)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/usbd_config.h"
#include "config/pulse_encoder_config.h"
#elif defined(SOC_SERIES_STM32F2)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#elif defined(SOC_SERIES_STM32F4)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/qspi_config.h"
#include "config/usbd_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/pulse_encoder_config.h"
#elif defined(SOC_SERIES_STM32F7)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/qspi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#elif defined(SOC_SERIES_STM32L0)
#include "config/dma_config.h"
#include "config/uart_config.h"
#elif defined(SOC_SERIES_STM32L1)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/usbd_config.h"
#elif defined(SOC_SERIES_STM32L4)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/qspi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/usbd_config.h"
#elif defined(SOC_SERIES_STM32G0)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/pwm_config.h"
#elif defined(SOC_SERIES_STM32G4)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/qspi_config.h"
#include "config/usbd_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/pulse_encoder_config.h"
#elif defined(SOC_SERIES_STM32H7)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/qspi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/usbd_config.h"
#endif
#ifdef __cplusplus
}
#endif
#endif

47
drivers/include/drv_dma.h Normal file
View File

@ -0,0 +1,47 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-10 SummerGift first version
*/
#ifndef __DRV_DMA_H_
#define __DRV_DMA_H_
#include <rtthread.h>
#include <board.h>
#ifdef __cplusplus
extern "C" {
#endif
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L0) \
||defined(SOC_SERIES_STM32L1) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4)
#define DMA_INSTANCE_TYPE DMA_Channel_TypeDef
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)\
|| defined(SOC_SERIES_STM32H7)
#define DMA_INSTANCE_TYPE DMA_Stream_TypeDef
#endif /* defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L4) */
struct dma_config {
DMA_INSTANCE_TYPE *Instance;
rt_uint32_t dma_rcc;
IRQn_Type dma_irq;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
rt_uint32_t channel;
#endif
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4)
rt_uint32_t request;
#endif
};
#ifdef __cplusplus
}
#endif
#endif /*__DRV_DMA_H_ */

92
drivers/include/drv_eth.h Normal file
View File

@ -0,0 +1,92 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-25 zylx first version
*/
#ifndef __DRV_ETH_H__
#define __DRV_ETH_H__
#include <rtthread.h>
#include <rthw.h>
#include <rtdevice.h>
#include <board.h>
/* The PHY basic control register */
#define PHY_BASIC_CONTROL_REG 0x00U
#define PHY_RESET_MASK (1<<15)
#define PHY_AUTO_NEGOTIATION_MASK (1<<12)
/* The PHY basic status register */
#define PHY_BASIC_STATUS_REG 0x01U
#define PHY_LINKED_STATUS_MASK (1<<2)
#define PHY_AUTONEGO_COMPLETE_MASK (1<<5)
/* The PHY ID one register */
#define PHY_ID1_REG 0x02U
/* The PHY ID two register */
#define PHY_ID2_REG 0x03U
/* The PHY auto-negotiate advertise register */
#define PHY_AUTONEG_ADVERTISE_REG 0x04U
#ifdef PHY_USING_LAN8720A
/* The PHY interrupt source flag register. */
#define PHY_INTERRUPT_FLAG_REG 0x1DU
/* The PHY interrupt mask register. */
#define PHY_INTERRUPT_MASK_REG 0x1EU
#define PHY_LINK_DOWN_MASK (1<<4)
#define PHY_AUTO_NEGO_COMPLETE_MASK (1<<6)
/* The PHY status register. */
#define PHY_Status_REG 0x1FU
#define PHY_10M_MASK (1<<2)
#define PHY_100M_MASK (1<<3)
#define PHY_FULL_DUPLEX_MASK (1<<4)
#define PHY_Status_SPEED_10M(sr) ((sr) & PHY_10M_MASK)
#define PHY_Status_SPEED_100M(sr) ((sr) & PHY_100M_MASK)
#define PHY_Status_FULL_DUPLEX(sr) ((sr) & PHY_FULL_DUPLEX_MASK)
#endif /* PHY_USING_LAN8720A */
#ifdef PHY_USING_DM9161CEP
#define PHY_Status_REG 0x11U
#define PHY_10M_MASK ((1<<12) || (1<<13))
#define PHY_100M_MASK ((1<<14) || (1<<15))
#define PHY_FULL_DUPLEX_MASK ((1<<15) || (1<<13))
#define PHY_Status_SPEED_10M(sr) ((sr) & PHY_10M_MASK)
#define PHY_Status_SPEED_100M(sr) ((sr) & PHY_100M_MASK)
#define PHY_Status_FULL_DUPLEX(sr) ((sr) & PHY_FULL_DUPLEX_MASK)
/* The PHY interrupt source flag register. */
#define PHY_INTERRUPT_FLAG_REG 0x15U
/* The PHY interrupt mask register. */
#define PHY_INTERRUPT_MASK_REG 0x15U
#define PHY_LINK_CHANGE_FLAG (1<<2)
#define PHY_LINK_CHANGE_MASK (1<<9)
#define PHY_INT_MASK 0
#endif /* PHY_USING_DM9161CEP */
#ifdef PHY_USING_DP83848C
#define PHY_Status_REG 0x10U
#define PHY_10M_MASK (1<<1)
#define PHY_FULL_DUPLEX_MASK (1<<2)
#define PHY_Status_SPEED_10M(sr) ((sr) & PHY_10M_MASK)
#define PHY_Status_SPEED_100M(sr) (!PHY_Status_SPEED_10M(sr))
#define PHY_Status_FULL_DUPLEX(sr) ((sr) & PHY_FULL_DUPLEX_MASK)
/* The PHY interrupt source flag register. */
#define PHY_INTERRUPT_FLAG_REG 0x12U
#define PHY_LINK_CHANGE_FLAG (1<<13)
/* The PHY interrupt control register. */
#define PHY_INTERRUPT_CTRL_REG 0x11U
#define PHY_INTERRUPT_EN ((1<<0)|(1<<1))
/* The PHY interrupt mask register. */
#define PHY_INTERRUPT_MASK_REG 0x12U
#define PHY_INT_MASK (1<<5)
#endif /* PHY_USING_DP83848C */
#endif /* __DRV_ETH_H__ */

View File

@ -0,0 +1,31 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-5 SummerGift first version
*/
#ifndef __DRV_FLASH_H__
#define __DRV_FLASH_H__
#include <rtthread.h>
#include "rtdevice.h"
#include <rthw.h>
#include <drv_common.h>
#ifdef __cplusplus
extern "C" {
#endif
int stm32_flash_read(rt_uint32_t addr, rt_uint8_t *buf, size_t size);
int stm32_flash_write(rt_uint32_t addr, const rt_uint8_t *buf, size_t size);
int stm32_flash_erase(rt_uint32_t addr, size_t size);
#ifdef __cplusplus
}
#endif
#endif /* __DRV_FLASH_H__ */

27
drivers/include/drv_log.h Normal file
View File

@ -0,0 +1,27 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-15 SummerGift first version
*/
/*
* NOTE: DO NOT include this file on the header file.
*/
#ifndef LOG_TAG
#define DBG_TAG "drv"
#else
#define DBG_TAG LOG_TAG
#endif /* LOG_TAG */
#ifdef DRV_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* DRV_DEBUG */
#include <rtdbg.h>

View File

@ -0,0 +1,17 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-27 zylx first version
*/
#ifndef __DRV_QSPI_H_
#define __DRV_QSPI_H_
#include <rtthread.h>
rt_err_t stm32_qspi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint32_t pin, rt_uint8_t data_line_width, void (*enter_qspi_mode)(), void (*exit_qspi_mode)());
#endif

200
drivers/include/drv_sdio.h Normal file
View File

@ -0,0 +1,200 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-13 BalanceTWK first version
* 2019-06-11 WillianChan Add SD card hot plug detection
*/
#ifndef _DRV_SDIO_H
#define _DRV_SDIO_H
#include <rtthread.h>
#include "rtdevice.h"
#include <rthw.h>
#include <drv_common.h>
#include "drv_dma.h"
#include <string.h>
#include <drivers/mmcsd_core.h>
#include <drivers/sdio.h>
#ifdef BSP_USING_SDIO
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4)
#define SDCARD_INSTANCE_TYPE SDIO_TypeDef
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7)
#define SDCARD_INSTANCE_TYPE SDMMC_TypeDef
#endif /* defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F4) */
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4)
#define SDCARD_INSTANCE SDIO
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7)
#define SDCARD_INSTANCE SDMMC1
#endif /* defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F4) */
#define SDIO_BUFF_SIZE 4096
#define SDIO_ALIGN_LEN 32
#ifndef SDIO_MAX_FREQ
#define SDIO_MAX_FREQ (1000000)
#endif
#ifndef SDIO_BASE_ADDRESS
#define SDIO_BASE_ADDRESS (0x40012800U)
#endif
#ifndef SDIO_CLOCK_FREQ
#define SDIO_CLOCK_FREQ (48U * 1000 * 1000)
#endif
#ifndef SDIO_BUFF_SIZE
#define SDIO_BUFF_SIZE (4096)
#endif
#ifndef SDIO_ALIGN_LEN
#define SDIO_ALIGN_LEN (32)
#endif
#ifndef SDIO_MAX_FREQ
#define SDIO_MAX_FREQ (24 * 1000 * 1000)
#endif
#define HW_SDIO_IT_CCRCFAIL (0x01U << 0)
#define HW_SDIO_IT_DCRCFAIL (0x01U << 1)
#define HW_SDIO_IT_CTIMEOUT (0x01U << 2)
#define HW_SDIO_IT_DTIMEOUT (0x01U << 3)
#define HW_SDIO_IT_TXUNDERR (0x01U << 4)
#define HW_SDIO_IT_RXOVERR (0x01U << 5)
#define HW_SDIO_IT_CMDREND (0x01U << 6)
#define HW_SDIO_IT_CMDSENT (0x01U << 7)
#define HW_SDIO_IT_DATAEND (0x01U << 8)
#define HW_SDIO_IT_STBITERR (0x01U << 9)
#define HW_SDIO_IT_DBCKEND (0x01U << 10)
#define HW_SDIO_IT_CMDACT (0x01U << 11)
#define HW_SDIO_IT_TXACT (0x01U << 12)
#define HW_SDIO_IT_RXACT (0x01U << 13)
#define HW_SDIO_IT_TXFIFOHE (0x01U << 14)
#define HW_SDIO_IT_RXFIFOHF (0x01U << 15)
#define HW_SDIO_IT_TXFIFOF (0x01U << 16)
#define HW_SDIO_IT_RXFIFOF (0x01U << 17)
#define HW_SDIO_IT_TXFIFOE (0x01U << 18)
#define HW_SDIO_IT_RXFIFOE (0x01U << 19)
#define HW_SDIO_IT_TXDAVL (0x01U << 20)
#define HW_SDIO_IT_RXDAVL (0x01U << 21)
#define HW_SDIO_IT_SDIOIT (0x01U << 22)
#define HW_SDIO_ERRORS \
(HW_SDIO_IT_CCRCFAIL | HW_SDIO_IT_CTIMEOUT | \
HW_SDIO_IT_DCRCFAIL | HW_SDIO_IT_DTIMEOUT | \
HW_SDIO_IT_RXOVERR | HW_SDIO_IT_TXUNDERR)
#define HW_SDIO_POWER_OFF (0x00U)
#define HW_SDIO_POWER_UP (0x02U)
#define HW_SDIO_POWER_ON (0x03U)
#define HW_SDIO_FLOW_ENABLE (0x01U << 14)
#define HW_SDIO_BUSWIDE_1B (0x00U << 11)
#define HW_SDIO_BUSWIDE_4B (0x01U << 11)
#define HW_SDIO_BUSWIDE_8B (0x02U << 11)
#define HW_SDIO_BYPASS_ENABLE (0x01U << 10)
#define HW_SDIO_IDLE_ENABLE (0x01U << 9)
#define HW_SDIO_CLK_ENABLE (0x01U << 8)
#define HW_SDIO_SUSPEND_CMD (0x01U << 11)
#define HW_SDIO_CPSM_ENABLE (0x01U << 10)
#define HW_SDIO_WAIT_END (0x01U << 9)
#define HW_SDIO_WAIT_INT (0x01U << 8)
#define HW_SDIO_RESPONSE_NO (0x00U << 6)
#define HW_SDIO_RESPONSE_SHORT (0x01U << 6)
#define HW_SDIO_RESPONSE_LONG (0x03U << 6)
#define HW_SDIO_DATA_LEN_MASK (0x01FFFFFFU)
#define HW_SDIO_IO_ENABLE (0x01U << 11)
#define HW_SDIO_RWMOD_CK (0x01U << 10)
#define HW_SDIO_RWSTOP_ENABLE (0x01U << 9)
#define HW_SDIO_RWSTART_ENABLE (0x01U << 8)
#define HW_SDIO_DBLOCKSIZE_1 (0x00U << 4)
#define HW_SDIO_DBLOCKSIZE_2 (0x01U << 4)
#define HW_SDIO_DBLOCKSIZE_4 (0x02U << 4)
#define HW_SDIO_DBLOCKSIZE_8 (0x03U << 4)
#define HW_SDIO_DBLOCKSIZE_16 (0x04U << 4)
#define HW_SDIO_DBLOCKSIZE_32 (0x05U << 4)
#define HW_SDIO_DBLOCKSIZE_64 (0x06U << 4)
#define HW_SDIO_DBLOCKSIZE_128 (0x07U << 4)
#define HW_SDIO_DBLOCKSIZE_256 (0x08U << 4)
#define HW_SDIO_DBLOCKSIZE_512 (0x09U << 4)
#define HW_SDIO_DBLOCKSIZE_1024 (0x0AU << 4)
#define HW_SDIO_DBLOCKSIZE_2048 (0x0BU << 4)
#define HW_SDIO_DBLOCKSIZE_4096 (0x0CU << 4)
#define HW_SDIO_DBLOCKSIZE_8192 (0x0DU << 4)
#define HW_SDIO_DBLOCKSIZE_16384 (0x0EU << 4)
#define HW_SDIO_DMA_ENABLE (0x01U << 3)
#define HW_SDIO_STREAM_ENABLE (0x01U << 2)
#define HW_SDIO_TO_HOST (0x01U << 1)
#define HW_SDIO_DPSM_ENABLE (0x01U << 0)
#define HW_SDIO_DATATIMEOUT (0xF0000000U)
struct stm32_sdio
{
volatile rt_uint32_t power;
volatile rt_uint32_t clkcr;
volatile rt_uint32_t arg;
volatile rt_uint32_t cmd;
volatile rt_uint32_t respcmd;
volatile rt_uint32_t resp1;
volatile rt_uint32_t resp2;
volatile rt_uint32_t resp3;
volatile rt_uint32_t resp4;
volatile rt_uint32_t dtimer;
volatile rt_uint32_t dlen;
volatile rt_uint32_t dctrl;
volatile rt_uint32_t dcount;
volatile rt_uint32_t sta;
volatile rt_uint32_t icr;
volatile rt_uint32_t mask;
volatile rt_uint32_t reserved0[2];
volatile rt_uint32_t fifocnt;
volatile rt_uint32_t reserved1[13];
volatile rt_uint32_t fifo;
};
typedef rt_err_t (*dma_txconfig)(rt_uint32_t *src, rt_uint32_t *dst, int size);
typedef rt_err_t (*dma_rxconfig)(rt_uint32_t *src, rt_uint32_t *dst, int size);
typedef rt_uint32_t (*sdio_clk_get)(struct stm32_sdio *hw_sdio);
struct stm32_sdio_des
{
struct stm32_sdio *hw_sdio;
dma_txconfig txconfig;
dma_rxconfig rxconfig;
sdio_clk_get clk_get;
};
struct stm32_sdio_config
{
SDCARD_INSTANCE_TYPE *Instance;
struct dma_config dma_rx, dma_tx;
};
/* stm32 sdio dirver class */
struct stm32_sdio_class
{
struct stm32_sdio_des *des;
const struct stm32_sdio_config *cfg;
struct rt_mmcsd_host host;
struct
{
DMA_HandleTypeDef handle_rx;
DMA_HandleTypeDef handle_tx;
} dma;
};
extern void stm32_mmcsd_change(void);
#endif
#endif /* BSP_USING_SDIO */

View File

@ -0,0 +1,73 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-08 balanceTWK first version
*/
#ifndef __DRV_I2C__
#define __DRV_I2C__
#include <rtthread.h>
#include <rthw.h>
#include <rtdevice.h>
#ifdef RT_USING_I2C
/* stm32 config class */
struct stm32_soft_i2c_config
{
rt_uint8_t scl;
rt_uint8_t sda;
const char *bus_name;
};
/* stm32 i2c dirver class */
struct stm32_i2c
{
struct rt_i2c_bit_ops ops;
struct rt_i2c_bus_device i2c2_bus;
};
#ifdef BSP_USING_I2C1
#define I2C1_BUS_CONFIG \
{ \
.scl = BSP_I2C1_SCL_PIN, \
.sda = BSP_I2C1_SDA_PIN, \
.bus_name = "i2c1", \
}
#endif
#ifdef BSP_USING_I2C2
#define I2C2_BUS_CONFIG \
{ \
.scl = BSP_I2C2_SCL_PIN, \
.sda = BSP_I2C2_SDA_PIN, \
.bus_name = "i2c2", \
}
#endif
#ifdef BSP_USING_I2C3
#define I2C3_BUS_CONFIG \
{ \
.scl = BSP_I2C3_SCL_PIN, \
.sda = BSP_I2C3_SDA_PIN, \
.bus_name = "i2c3", \
}
#endif
#ifdef BSP_USING_I2C4
#define I2C4_BUS_CONFIG \
{ \
.scl = BSP_I2C4_SCL_PIN, \
.sda = BSP_I2C4_SDA_PIN, \
.bus_name = "i2c4", \
}
#endif
int rt_hw_i2c_init(void);
#endif
#endif /* RT_USING_I2C */

62
drivers/include/drv_spi.h Normal file
View File

@ -0,0 +1,62 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-5 SummerGift first version
*/
#ifndef __DRV_SPI_H_
#define __DRV_SPI_H_
#include <rtthread.h>
#include "rtdevice.h"
#include <rthw.h>
#include <drv_common.h>
#include "drv_dma.h"
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef* cs_gpiox, uint16_t cs_gpio_pin);
struct stm32_hw_spi_cs
{
GPIO_TypeDef* GPIOx;
uint16_t GPIO_Pin;
};
struct stm32_spi_config
{
SPI_TypeDef *Instance;
char *bus_name;
struct dma_config *dma_rx, *dma_tx;
};
struct stm32_spi_device
{
rt_uint32_t pin;
char *bus_name;
char *device_name;
};
#define SPI_USING_RX_DMA_FLAG (1<<0)
#define SPI_USING_TX_DMA_FLAG (1<<1)
/* stm32 spi dirver class */
struct stm32_spi
{
SPI_HandleTypeDef handle;
struct stm32_spi_config *config;
struct rt_spi_configuration *cfg;
struct
{
DMA_HandleTypeDef handle_rx;
DMA_HandleTypeDef handle_tx;
} dma;
rt_uint8_t spi_dma_flag;
struct rt_spi_bus spi_bus;
};
#endif /*__DRV_SPI_H_ */

View File

@ -0,0 +1,21 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-12-12 ZYH the first version
* 2019-12-19 tyustli port to stm32 series
*/
#ifndef __DRV_USBH_H__
#define __DRV_USBH_H__
#include <rtthread.h>
#define OTG_FS_PORT 1
int stm_usbh_register(void);
#endif
/************* end of file ************/

View File

@ -0,0 +1,456 @@
/**
******************************************************************************
* @file stm32h7xx_hal_conf.h
* @author MCD Application Team
* @brief HAL configuration file.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32H7xx_HAL_CONF_H
#define __STM32H7xx_HAL_CONF_H
#ifdef __cplusplus
extern "C" {
#endif
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* ########################## Module Selection ############################## */
/**
* @brief This is the list of modules to be used in the HAL driver
*/
#define HAL_MODULE_ENABLED
/* #define HAL_ADC_MODULE_ENABLED */
/* #define HAL_FDCAN_MODULE_ENABLED */
/* #define HAL_CEC_MODULE_ENABLED */
/* #define HAL_COMP_MODULE_ENABLED */
/* #define HAL_CRC_MODULE_ENABLED */
/* #define HAL_CRYP_MODULE_ENABLED */
/* #define HAL_DAC_MODULE_ENABLED */
/* #define HAL_DCMI_MODULE_ENABLED */
#define HAL_DMA2D_MODULE_ENABLED
/* #define HAL_ETH_MODULE_ENABLED */
/* #define HAL_NAND_MODULE_ENABLED */
/* #define HAL_NOR_MODULE_ENABLED */
/* #define HAL_SRAM_MODULE_ENABLED */
#define HAL_SDRAM_MODULE_ENABLED
/* #define HAL_HASH_MODULE_ENABLED */
/* #define HAL_HRTIM_MODULE_ENABLED */
/* #define HAL_JPEG_MODULE_ENABLED */
/* #define HAL_OPAMP_MODULE_ENABLED */
/* #define HAL_I2S_MODULE_ENABLED */
/* #define HAL_SMBUS_MODULE_ENABLED */
#define HAL_IWDG_MODULE_ENABLED
/* #define HAL_LPTIM_MODULE_ENABLED */
#define HAL_LTDC_MODULE_ENABLED
#define HAL_QSPI_MODULE_ENABLED
/* #define HAL_RNG_MODULE_ENABLED */
#define HAL_RTC_MODULE_ENABLED
/* #define HAL_SAI_MODULE_ENABLED */
/* #define HAL_SD_MODULE_ENABLED */
/* #define HAL_MMC_MODULE_ENABLED */
/* #define HAL_SPDIFRX_MODULE_ENABLED */
/* #define HAL_SPI_MODULE_ENABLED */
/* #define HAL_SWPMI_MODULE_ENABLED */
/* #define HAL_TIM_MODULE_ENABLED */
#define HAL_UART_MODULE_ENABLED
/* #define HAL_USART_MODULE_ENABLED */
/* #define HAL_IRDA_MODULE_ENABLED */
/* #define HAL_SMARTCARD_MODULE_ENABLED */
/* #define HAL_WWDG_MODULE_ENABLED */
/* #define HAL_PCD_MODULE_ENABLED */
/* #define HAL_HCD_MODULE_ENABLED */
/* #define HAL_DFSDM_MODULE_ENABLED */
/* #define HAL_DSI_MODULE_ENABLED */
/* #define HAL_JPEG_MODULE_ENABLED */
/* #define HAL_MDIOS_MODULE_ENABLED */
/* #define HAL_EXTI_MODULE_ENABLED */
#define HAL_GPIO_MODULE_ENABLED
#define HAL_DMA_MODULE_ENABLED
#define HAL_MDMA_MODULE_ENABLED
#define HAL_RCC_MODULE_ENABLED
#define HAL_FLASH_MODULE_ENABLED
#define HAL_PWR_MODULE_ENABLED
#define HAL_I2C_MODULE_ENABLED
#define HAL_CORTEX_MODULE_ENABLED
#define HAL_HSEM_MODULE_ENABLED
/* ########################## Oscillator Values adaptation ####################*/
/**
* @brief Adjust the value of External High Speed oscillator (HSE) used in your application.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSE is used as system clock source, directly or through the PLL).
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)25000000) /*!< Value of the External oscillator in Hz : FPGA case fixed to 60MHZ */
#endif /* HSE_VALUE */
#if !defined (HSE_STARTUP_TIMEOUT)
#define HSE_STARTUP_TIMEOUT ((uint32_t)100U) /*!< Time out for HSE start up, in ms */
#endif /* HSE_STARTUP_TIMEOUT */
/**
* @brief Internal oscillator (CSI) default value.
* This value is the default CSI value after Reset.
*/
#if !defined (CSI_VALUE)
#define CSI_VALUE ((uint32_t)4000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* CSI_VALUE */
/**
* @brief Internal High Speed oscillator (HSI) value.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSI is used as system clock source, directly or through the PLL).
*/
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)64000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @brief External Low Speed oscillator (LSE) value.
* This value is used by the UART, RTC HAL module to compute the system frequency
*/
#if !defined (LSE_VALUE)
#define LSE_VALUE ((uint32_t)32768U) /*!< Value of the External oscillator in Hz*/
#endif /* LSE_VALUE */
#if !defined (LSE_STARTUP_TIMEOUT)
#define LSE_STARTUP_TIMEOUT ((uint32_t)5000U) /*!< Time out for LSE start up, in ms */
#endif /* LSE_STARTUP_TIMEOUT */
/**
* @brief External clock source for I2S peripheral
* This value is used by the I2S HAL module to compute the I2S clock source
* frequency, this source is inserted directly through I2S_CKIN pad.
*/
#if !defined (EXTERNAL_CLOCK_VALUE)
#define EXTERNAL_CLOCK_VALUE 12288000U /*!< Value of the External clock in Hz*/
#endif /* EXTERNAL_CLOCK_VALUE */
/* Tip: To avoid modifying this file each time you need to use different HSE,
=== you can define the HSE value in your toolchain compiler preprocessor. */
/* ########################### System Configuration ######################### */
/**
* @brief This is the HAL system configuration section
*/
#define VDD_VALUE ((uint32_t)3300U) /*!< Value of VDD in mv */
#define TICK_INT_PRIORITY ((uint32_t)0U) /*!< tick interrupt priority */
#define USE_RTOS 0U
#define USE_SD_TRANSCEIVER 1U /*!< use uSD Transceiver */
#define USE_HAL_ADC_REGISTER_CALLBACKS 0U /* ADC register callback disabled */
#define USE_HAL_CEC_REGISTER_CALLBACKS 0U /* CEC register callback disabled */
#define USE_HAL_COMP_REGISTER_CALLBACKS 0U /* COMP register callback disabled */
#define USE_HAL_CRYP_REGISTER_CALLBACKS 0U /* CRYP register callback disabled */
#define USE_HAL_DAC_REGISTER_CALLBACKS 0U /* DAC register callback disabled */
#define USE_HAL_DCMI_REGISTER_CALLBACKS 0U /* DCMI register callback disabled */
#define USE_HAL_DFSDM_REGISTER_CALLBACKS 0U /* DFSDM register callback disabled */
#define USE_HAL_DMA2D_REGISTER_CALLBACKS 0U /* DMA2D register callback disabled */
#define USE_HAL_DSI_REGISTER_CALLBACKS 0U /* DSI register callback disabled */
#define USE_HAL_ETH_REGISTER_CALLBACKS 0U /* ETH register callback disabled */
#define USE_HAL_FDCAN_REGISTER_CALLBACKS 0U /* FDCAN register callback disabled */
#define USE_HAL_NAND_REGISTER_CALLBACKS 0U /* NAND register callback disabled */
#define USE_HAL_NOR_REGISTER_CALLBACKS 0U /* NOR register callback disabled */
#define USE_HAL_SDRAM_REGISTER_CALLBACKS 0U /* SDRAM register callback disabled */
#define USE_HAL_SRAM_REGISTER_CALLBACKS 0U /* SRAM register callback disabled */
#define USE_HAL_HASH_REGISTER_CALLBACKS 0U /* HASH register callback disabled */
#define USE_HAL_HCD_REGISTER_CALLBACKS 0U /* HCD register callback disabled */
#define USE_HAL_HRTIM_REGISTER_CALLBACKS 0U /* HRTIM register callback disabled */
#define USE_HAL_I2C_REGISTER_CALLBACKS 0U /* I2C register callback disabled */
#define USE_HAL_I2S_REGISTER_CALLBACKS 0U /* I2S register callback disabled */
#define USE_HAL_JPEG_REGISTER_CALLBACKS 0U /* JPEG register callback disabled */
#define USE_HAL_LPTIM_REGISTER_CALLBACKS 0U /* LPTIM register callback disabled */
#define USE_HAL_LTDC_REGISTER_CALLBACKS 0U /* LTDC register callback disabled */
#define USE_HAL_MDIOS_REGISTER_CALLBACKS 0U /* MDIO register callback disabled */
#define USE_HAL_OPAMP_REGISTER_CALLBACKS 0U /* MDIO register callback disabled */
#define USE_HAL_PCD_REGISTER_CALLBACKS 0U /* PCD register callback disabled */
#define USE_HAL_QSPI_REGISTER_CALLBACKS 0U /* QSPI register callback disabled */
#define USE_HAL_RNG_REGISTER_CALLBACKS 0U /* RNG register callback disabled */
#define USE_HAL_RTC_REGISTER_CALLBACKS 0U /* RTC register callback disabled */
#define USE_HAL_SAI_REGISTER_CALLBACKS 0U /* SAI register callback disabled */
#define USE_HAL_SPDIFRX_REGISTER_CALLBACKS 0U /* SPDIFRX register callback disabled */
#define USE_HAL_SMBUS_REGISTER_CALLBACKS 0U /* SMBUS register callback disabled */
#define USE_HAL_SPI_REGISTER_CALLBACKS 0U /* SPI register callback disabled */
#define USE_HAL_SWPMI_REGISTER_CALLBACKS 0U /* SWPMI register callback disabled */
#define USE_HAL_TIM_REGISTER_CALLBACKS 0U /* TIM register callback disabled */
#define USE_HAL_WWDG_REGISTER_CALLBACKS 0U /* WWDG register callback disabled */
/* ########################### Ethernet Configuration ######################### */
#define ETH_TX_DESC_CNT 4 /* number of Ethernet Tx DMA descriptors */
#define ETH_RX_DESC_CNT 4 /* number of Ethernet Rx DMA descriptors */
#define ETH_MAC_ADDR0 ((uint8_t)0x02)
#define ETH_MAC_ADDR1 ((uint8_t)0x00)
#define ETH_MAC_ADDR2 ((uint8_t)0x00)
#define ETH_MAC_ADDR3 ((uint8_t)0x00)
#define ETH_MAC_ADDR4 ((uint8_t)0x00)
#define ETH_MAC_ADDR5 ((uint8_t)0x00)
/* ########################## Assert Selection ############################## */
/**
* @brief Uncomment the line below to expanse the "assert_param" macro in the
* HAL drivers code
*/
/* #define USE_FULL_ASSERT 1U */
/* Includes ------------------------------------------------------------------*/
/**
* @brief Include module's header file
*/
#ifdef HAL_RCC_MODULE_ENABLED
#include "stm32h7xx_hal_rcc.h"
#endif /* HAL_RCC_MODULE_ENABLED */
#ifdef HAL_GPIO_MODULE_ENABLED
#include "stm32h7xx_hal_gpio.h"
#endif /* HAL_GPIO_MODULE_ENABLED */
#ifdef HAL_DMA_MODULE_ENABLED
#include "stm32h7xx_hal_dma.h"
#endif /* HAL_DMA_MODULE_ENABLED */
#ifdef HAL_MDMA_MODULE_ENABLED
#include "stm32h7xx_hal_mdma.h"
#endif /* HAL_MDMA_MODULE_ENABLED */
#ifdef HAL_HASH_MODULE_ENABLED
#include "stm32h7xx_hal_hash.h"
#endif /* HAL_HASH_MODULE_ENABLED */
#ifdef HAL_DCMI_MODULE_ENABLED
#include "stm32h7xx_hal_dcmi.h"
#endif /* HAL_DCMI_MODULE_ENABLED */
#ifdef HAL_DMA2D_MODULE_ENABLED
#include "stm32h7xx_hal_dma2d.h"
#endif /* HAL_DMA2D_MODULE_ENABLED */
#ifdef HAL_DSI_MODULE_ENABLED
#include "stm32h7xx_hal_dsi.h"
#endif /* HAL_DSI_MODULE_ENABLED */
#ifdef HAL_DFSDM_MODULE_ENABLED
#include "stm32h7xx_hal_dfsdm.h"
#endif /* HAL_DFSDM_MODULE_ENABLED */
#ifdef HAL_ETH_MODULE_ENABLED
#include "stm32h7xx_hal_eth.h"
#endif /* HAL_ETH_MODULE_ENABLED */
#ifdef HAL_EXTI_MODULE_ENABLED
#include "stm32h7xx_hal_exti.h"
#endif /* HAL_EXTI_MODULE_ENABLED */
#ifdef HAL_CORTEX_MODULE_ENABLED
#include "stm32h7xx_hal_cortex.h"
#endif /* HAL_CORTEX_MODULE_ENABLED */
#ifdef HAL_ADC_MODULE_ENABLED
#include "stm32h7xx_hal_adc.h"
#endif /* HAL_ADC_MODULE_ENABLED */
#ifdef HAL_FDCAN_MODULE_ENABLED
#include "stm32h7xx_hal_fdcan.h"
#endif /* HAL_FDCAN_MODULE_ENABLED */
#ifdef HAL_CEC_MODULE_ENABLED
#include "stm32h7xx_hal_cec.h"
#endif /* HAL_CEC_MODULE_ENABLED */
#ifdef HAL_COMP_MODULE_ENABLED
#include "stm32h7xx_hal_comp.h"
#endif /* HAL_COMP_MODULE_ENABLED */
#ifdef HAL_CRC_MODULE_ENABLED
#include "stm32h7xx_hal_crc.h"
#endif /* HAL_CRC_MODULE_ENABLED */
#ifdef HAL_CRYP_MODULE_ENABLED
#include "stm32h7xx_hal_cryp.h"
#endif /* HAL_CRYP_MODULE_ENABLED */
#ifdef HAL_DAC_MODULE_ENABLED
#include "stm32h7xx_hal_dac.h"
#endif /* HAL_DAC_MODULE_ENABLED */
#ifdef HAL_FLASH_MODULE_ENABLED
#include "stm32h7xx_hal_flash.h"
#endif /* HAL_FLASH_MODULE_ENABLED */
#ifdef HAL_HRTIM_MODULE_ENABLED
#include "stm32h7xx_hal_hrtim.h"
#endif /* HAL_HRTIM_MODULE_ENABLED */
#ifdef HAL_HSEM_MODULE_ENABLED
#include "stm32h7xx_hal_hsem.h"
#endif /* HAL_HSEM_MODULE_ENABLED */
#ifdef HAL_SRAM_MODULE_ENABLED
#include "stm32h7xx_hal_sram.h"
#endif /* HAL_SRAM_MODULE_ENABLED */
#ifdef HAL_NOR_MODULE_ENABLED
#include "stm32h7xx_hal_nor.h"
#endif /* HAL_NOR_MODULE_ENABLED */
#ifdef HAL_NAND_MODULE_ENABLED
#include "stm32h7xx_hal_nand.h"
#endif /* HAL_NAND_MODULE_ENABLED */
#ifdef HAL_I2C_MODULE_ENABLED
#include "stm32h7xx_hal_i2c.h"
#endif /* HAL_I2C_MODULE_ENABLED */
#ifdef HAL_I2S_MODULE_ENABLED
#include "stm32h7xx_hal_i2s.h"
#endif /* HAL_I2S_MODULE_ENABLED */
#ifdef HAL_IWDG_MODULE_ENABLED
#include "stm32h7xx_hal_iwdg.h"
#endif /* HAL_IWDG_MODULE_ENABLED */
#ifdef HAL_JPEG_MODULE_ENABLED
#include "stm32h7xx_hal_jpeg.h"
#endif /* HAL_JPEG_MODULE_ENABLED */
#ifdef HAL_MDIOS_MODULE_ENABLED
#include "stm32h7xx_hal_mdios.h"
#endif /* HAL_MDIOS_MODULE_ENABLED */
#ifdef HAL_MMC_MODULE_ENABLED
#include "stm32h7xx_hal_mmc.h"
#endif /* HAL_MMC_MODULE_ENABLED */
#ifdef HAL_LPTIM_MODULE_ENABLED
#include "stm32h7xx_hal_lptim.h"
#endif /* HAL_LPTIM_MODULE_ENABLED */
#ifdef HAL_LTDC_MODULE_ENABLED
#include "stm32h7xx_hal_ltdc.h"
#endif /* HAL_LTDC_MODULE_ENABLED */
#ifdef HAL_OPAMP_MODULE_ENABLED
#include "stm32h7xx_hal_opamp.h"
#endif /* HAL_OPAMP_MODULE_ENABLED */
#ifdef HAL_PWR_MODULE_ENABLED
#include "stm32h7xx_hal_pwr.h"
#endif /* HAL_PWR_MODULE_ENABLED */
#ifdef HAL_QSPI_MODULE_ENABLED
#include "stm32h7xx_hal_qspi.h"
#endif /* HAL_QSPI_MODULE_ENABLED */
#ifdef HAL_RAMECC_MODULE_ENABLED
#include "stm32h7xx_hal_ramecc.h"
#endif /* HAL_HCD_MODULE_ENABLED */
#ifdef HAL_RNG_MODULE_ENABLED
#include "stm32h7xx_hal_rng.h"
#endif /* HAL_RNG_MODULE_ENABLED */
#ifdef HAL_RTC_MODULE_ENABLED
#include "stm32h7xx_hal_rtc.h"
#endif /* HAL_RTC_MODULE_ENABLED */
#ifdef HAL_SAI_MODULE_ENABLED
#include "stm32h7xx_hal_sai.h"
#endif /* HAL_SAI_MODULE_ENABLED */
#ifdef HAL_SD_MODULE_ENABLED
#include "stm32h7xx_hal_sd.h"
#endif /* HAL_SD_MODULE_ENABLED */
#ifdef HAL_SDRAM_MODULE_ENABLED
#include "stm32h7xx_hal_sdram.h"
#endif /* HAL_SDRAM_MODULE_ENABLED */
#ifdef HAL_SPI_MODULE_ENABLED
#include "stm32h7xx_hal_spi.h"
#endif /* HAL_SPI_MODULE_ENABLED */
#ifdef HAL_SPDIFRX_MODULE_ENABLED
#include "stm32h7xx_hal_spdifrx.h"
#endif /* HAL_SPDIFRX_MODULE_ENABLED */
#ifdef HAL_SWPMI_MODULE_ENABLED
#include "stm32h7xx_hal_swpmi.h"
#endif /* HAL_SWPMI_MODULE_ENABLED */
#ifdef HAL_TIM_MODULE_ENABLED
#include "stm32h7xx_hal_tim.h"
#endif /* HAL_TIM_MODULE_ENABLED */
#ifdef HAL_UART_MODULE_ENABLED
#include "stm32h7xx_hal_uart.h"
#endif /* HAL_UART_MODULE_ENABLED */
#ifdef HAL_USART_MODULE_ENABLED
#include "stm32h7xx_hal_usart.h"
#endif /* HAL_USART_MODULE_ENABLED */
#ifdef HAL_IRDA_MODULE_ENABLED
#include "stm32h7xx_hal_irda.h"
#endif /* HAL_IRDA_MODULE_ENABLED */
#ifdef HAL_SMARTCARD_MODULE_ENABLED
#include "stm32h7xx_hal_smartcard.h"
#endif /* HAL_SMARTCARD_MODULE_ENABLED */
#ifdef HAL_SMBUS_MODULE_ENABLED
#include "stm32h7xx_hal_smbus.h"
#endif /* HAL_SMBUS_MODULE_ENABLED */
#ifdef HAL_WWDG_MODULE_ENABLED
#include "stm32h7xx_hal_wwdg.h"
#endif /* HAL_WWDG_MODULE_ENABLED */
#ifdef HAL_PCD_MODULE_ENABLED
#include "stm32h7xx_hal_pcd.h"
#endif /* HAL_PCD_MODULE_ENABLED */
#ifdef HAL_HCD_MODULE_ENABLED
#include "stm32h7xx_hal_hcd.h"
#endif /* HAL_HCD_MODULE_ENABLED */
/* Exported macro ------------------------------------------------------------*/
#ifdef USE_FULL_ASSERT
/**
* @brief The assert_param macro is used for function's parameters check.
* @param expr: If expr is false, it calls assert_failed function
* which reports the name of the source file and the source
* line number of the call that failed.
* If expr is true, it returns no value.
* @retval None
*/
#define assert_param(expr) ((expr) ? (void)0 : assert_failed((uint8_t *)__FILE__, __LINE__))
/* Exported functions ------------------------------------------------------- */
void assert_failed(uint8_t* file, uint32_t line);
#else
#define assert_param(expr) ((void)0)
#endif /* USE_FULL_ASSERT */
#ifdef __cplusplus
}
#endif
#endif /* __STM32H7xx_HAL_CONF_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,224 @@
/**
******************************************************************************
* @file stm32h7xx.h
* @author MCD Application Team
* @brief CMSIS STM32H7xx Device Peripheral Access Layer Header File.
*
* The file is the unique include file that the application programmer
* is using in the C source code, usually in main.c. This file contains:
* - Configuration section that allows to select:
* - The STM32H7xx device used in the target application
* - To use or not the peripherals drivers in application code(i.e.
* code will be based on direct access to peripherals registers
* rather than drivers API), this option is controlled by
* "#define USE_HAL_DRIVER"
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32h7xx
* @{
*/
#ifndef STM32H7xx_H
#define STM32H7xx_H
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/** @addtogroup Library_configuration_section
* @{
*/
/**
* @brief STM32 Family
*/
#if !defined (STM32H7)
#define STM32H7
#endif /* STM32H7 */
/* Uncomment the line below according to the target STM32H7 device used in your
application
*/
#if !defined (STM32H743xx) && !defined (STM32H753xx) && !defined (STM32H750xx) && !defined (STM32H742xx) && \
!defined (STM32H745xx) && !defined (STM32H755xx) && !defined (STM32H747xx) && !defined (STM32H757xx) && \
!defined (STM32H7A3xx) && !defined (STM32H7A3xxQ) && !defined (STM32H7B3xx) && !defined (STM32H7B3xxQ) && !defined (STM32H7B0xx) && !defined (STM32H7B0xxQ)
/* #define STM32H742xx */ /*!< STM32H742VI, STM32H742ZI, STM32H742AI, STM32H742II, STM32H742BI, STM32H742XI Devices */
/* #define STM32H743xx */ /*!< STM32H743VI, STM32H743ZI, STM32H743AI, STM32H743II, STM32H743BI, STM32H743XI Devices */
/* #define STM32H753xx */ /*!< STM32H753VI, STM32H753ZI, STM32H753AI, STM32H753II, STM32H753BI, STM32H753XI Devices */
/* #define STM32H750xx */ /*!< STM32H750V, STM32H750I, STM32H750X Devices */
/* #define STM32H747xx */ /*!< STM32H747ZI, STM32H747AI, STM32H747II, STM32H747BI, STM32H747XI Devices */
/* #define STM32H757xx */ /*!< STM32H757ZI, STM32H757AI, STM32H757II, STM32H757BI, STM32H757XI Devices */
/* #define STM32H745xx */ /*!< STM32H745ZI, STM32H745II, STM32H745BI, STM32H745XI Devices */
/* #define STM32H755xx */ /*!< STM32H755ZI, STM32H755II, STM32H755BI, STM32H755XI Devices */
/* #define STM32H7B0xx */ /*!< STM32H7B0ABIxQ, STM32H7B0IBTx, STM32H7B0RBTx, STM32H7B0VBTx, STM32H7B0ZBTx, STM32H7B0IBKxQ */
/* #define STM32H7A3xx */ /*!< STM32H7A3IIK6, STM32H7A3IIT6, STM32H7A3NIH6, STM32H7A3RIT6, STM32H7A3VIH6, STM32H7A3VIT6, STM32H7A3ZIT6 */
/* #define STM32H7A3xxQ */ /*!< STM32H7A3QIY6Q, STM32H7A3IIK6Q, STM32H7A3IIT6Q, STM32H7A3LIH6Q, STM32H7A3VIH6Q, STM32H7A3VIT6Q, STM32H7A3AII6Q, STM32H7A3ZIT6Q */
/* #define STM32H7B3xx */ /*!< STM32H7B3IIK6, STM32H7B3IIT6, STM32H7B3NIH6, STM32H7B3RIT6, STM32H7B3VIH6, STM32H7B3VIT6, STM32H7B3ZIT6 */
/* #define STM32H7B3xxQ */ /*!< STM32H7B3QIY6Q, STM32H7B3IIK6Q, STM32H7B3IIT6Q, STM32H7B3LIH6Q, STM32H7B3VIH6Q, STM32H7B3VIT6Q, STM32H7B3AII6Q, STM32H7B3ZIT6Q */
#endif
/* Tip: To avoid modifying this file each time you need to switch between these
devices, you can define the device in your toolchain compiler preprocessor.
*/
#if defined(DUAL_CORE) && !defined(CORE_CM4) && !defined(CORE_CM7)
#error "Dual core device, please select CORE_CM4 or CORE_CM7"
#endif
#if !defined (USE_HAL_DRIVER)
/**
* @brief Comment the line below if you will not use the peripherals drivers.
In this case, these drivers will not be included and the application code will
be based on direct access to peripherals registers
*/
/*#define USE_HAL_DRIVER */
#endif /* USE_HAL_DRIVER */
/**
* @brief CMSIS Device version number V1.7.0
*/
#define __STM32H7xx_CMSIS_DEVICE_VERSION_MAIN (0x01) /*!< [31:24] main version */
#define __STM32H7xx_CMSIS_DEVICE_VERSION_SUB1 (0x07) /*!< [23:16] sub1 version */
#define __STM32H7xx_CMSIS_DEVICE_VERSION_SUB2 (0x00) /*!< [15:8] sub2 version */
#define __STM32H7xx_CMSIS_DEVICE_VERSION_RC (0x00) /*!< [7:0] release candidate */
#define __STM32H7xx_CMSIS_DEVICE_VERSION ((__CMSIS_DEVICE_VERSION_MAIN << 24)\
|(__CMSIS_DEVICE_HAL_VERSION_SUB1 << 16)\
|(__CMSIS_DEVICE_HAL_VERSION_SUB2 << 8 )\
|(__CMSIS_DEVICE_HAL_VERSION_RC))
/**
* @}
*/
/** @addtogroup Device_Included
* @{
*/
#if defined(STM32H743xx)
#include "stm32h743xx.h"
#elif defined(STM32H753xx)
#include "stm32h753xx.h"
#elif defined(STM32H750xx)
#include "stm32h750xx.h"
#elif defined(STM32H742xx)
#include "stm32h742xx.h"
#elif defined(STM32H745xx)
#include "stm32h745xx.h"
#elif defined(STM32H755xx)
#include "stm32h755xx.h"
#elif defined(STM32H747xx)
#include "stm32h747xx.h"
#elif defined(STM32H757xx)
#include "stm32h757xx.h"
#elif defined(STM32H7B0xx)
#include "stm32h7b0xx.h"
#elif defined(STM32H7B0xxQ)
#include "stm32h7b0xxq.h"
#elif defined(STM32H7A3xx)
#include "stm32h7a3xx.h"
#elif defined(STM32H7B3xx)
#include "stm32h7b3xx.h"
#elif defined(STM32H7A3xxQ)
#include "stm32h7a3xxq.h"
#elif defined(STM32H7B3xxQ)
#include "stm32h7b3xxq.h"
#else
#error "Please select first the target STM32H7xx device used in your application (in stm32h7xx.h file)"
#endif
/**
* @}
*/
/** @addtogroup Exported_types
* @{
*/
typedef enum
{
RESET = 0,
SET = !RESET
} FlagStatus, ITStatus;
typedef enum
{
DISABLE = 0,
ENABLE = !DISABLE
} FunctionalState;
#define IS_FUNCTIONAL_STATE(STATE) (((STATE) == DISABLE) || ((STATE) == ENABLE))
typedef enum
{
ERROR = 0,
SUCCESS = !ERROR
} ErrorStatus;
/**
* @}
*/
/** @addtogroup Exported_macros
* @{
*/
#define SET_BIT(REG, BIT) ((REG) |= (BIT))
#define CLEAR_BIT(REG, BIT) ((REG) &= ~(BIT))
#define READ_BIT(REG, BIT) ((REG) & (BIT))
#define CLEAR_REG(REG) ((REG) = (0x0))
#define WRITE_REG(REG, VAL) ((REG) = (VAL))
#define READ_REG(REG) ((REG))
#define MODIFY_REG(REG, CLEARMASK, SETMASK) WRITE_REG((REG), (((READ_REG(REG)) & (~(CLEARMASK))) | (SETMASK)))
#define POSITION_VAL(VAL) (__CLZ(__RBIT(VAL)))
/**
* @}
*/
#if defined (USE_HAL_DRIVER)
#include "stm32h7xx_hal.h"
#endif /* USE_HAL_DRIVER */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* STM32H7xx_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,105 @@
/**
******************************************************************************
* @file system_stm32h7xx.h
* @author MCD Application Team
* @brief CMSIS Cortex-Mx Device System Source File for STM32H7xx devices.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32h7xx_system
* @{
*/
/**
* @brief Define to prevent recursive inclusion
*/
#ifndef SYSTEM_STM32H7XX_H
#define SYSTEM_STM32H7XX_H
#ifdef __cplusplus
extern "C" {
#endif
/** @addtogroup STM32H7xx_System_Includes
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Exported_types
* @{
*/
/* This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetSysClockFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
extern uint32_t SystemCoreClock; /*!< System Domain1 Clock Frequency */
extern uint32_t SystemD2Clock; /*!< System Domain2 Clock Frequency */
extern const uint8_t D1CorePrescTable[16] ; /*!< D1CorePrescTable prescalers table values */
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Exported_Constants
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Exported_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Exported_Functions
* @{
*/
extern void SystemInit(void);
extern void SystemCoreClockUpdate(void);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* SYSTEM_STM32H7XX_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,751 @@
/**
******************************************************************************
* @file startup_stm32h750xx.s
* @author MCD Application Team
* @brief STM32H750xx Devices vector table for GCC based toolchain.
* This module performs:
* - Set the initial SP
* - Set the initial PC == Reset_Handler,
* - Set the vector table entries with the exceptions ISR address
* - Branches to main in the C library (which eventually
* calls main()).
* After Reset the Cortex-M processor is in Thread mode,
* priority is Privileged, and the Stack is set to Main.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2018 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
.syntax unified
.cpu cortex-m7
.fpu softvfp
.thumb
.global g_pfnVectors
.global Default_Handler
/* start address for the initialization values of the .data section.
defined in linker script */
.word _sidata
/* start address for the .data section. defined in linker script */
.word _sdata
/* end address for the .data section. defined in linker script */
.word _edata
/* start address for the .bss section. defined in linker script */
.word _sbss
/* end address for the .bss section. defined in linker script */
.word _ebss
/* stack used for SystemInit_ExtMemCtl; always internal RAM used */
/**
* @brief This is the code that gets called when the processor first
* starts execution following a reset event. Only the absolutely
* necessary set is performed, after which the application
* supplied main() routine is called.
* @param None
* @retval : None
*/
.section .text.Reset_Handler
.weak Reset_Handler
.type Reset_Handler, %function
Reset_Handler:
ldr sp, =_estack /* set stack pointer */
/* Copy the data segment initializers from flash to SRAM */
movs r1, #0
b LoopCopyDataInit
CopyDataInit:
ldr r3, =_sidata
ldr r3, [r3, r1]
str r3, [r0, r1]
adds r1, r1, #4
LoopCopyDataInit:
ldr r0, =_sdata
ldr r3, =_edata
adds r2, r0, r1
cmp r2, r3
bcc CopyDataInit
ldr r2, =_sbss
b LoopFillZerobss
/* Zero fill the bss segment. */
FillZerobss:
movs r3, #0
str r3, [r2], #4
LoopFillZerobss:
ldr r3, = _ebss
cmp r2, r3
bcc FillZerobss
/* Call the clock system intitialization function.*/
bl SystemInit
/* Call static constructors */
/* bl __libc_init_array */
/* Call the application's entry point.*/
bl entry
bx lr
.size Reset_Handler, .-Reset_Handler
/**
* @brief This is the code that gets called when the processor receives an
* unexpected interrupt. This simply enters an infinite loop, preserving
* the system state for examination by a debugger.
* @param None
* @retval None
*/
.section .text.Default_Handler,"ax",%progbits
Default_Handler:
Infinite_Loop:
b Infinite_Loop
.size Default_Handler, .-Default_Handler
/******************************************************************************
*
* The minimal vector table for a Cortex M. Note that the proper constructs
* must be placed on this to ensure that it ends up at physical address
* 0x0000.0000.
*
*******************************************************************************/
.section .isr_vector,"a",%progbits
.type g_pfnVectors, %object
.size g_pfnVectors, .-g_pfnVectors
g_pfnVectors:
.word _estack
.word Reset_Handler
.word NMI_Handler
.word HardFault_Handler
.word MemManage_Handler
.word BusFault_Handler
.word UsageFault_Handler
.word 0
.word 0
.word 0
.word 0
.word SVC_Handler
.word DebugMon_Handler
.word 0
.word PendSV_Handler
.word SysTick_Handler
/* External Interrupts */
.word WWDG_IRQHandler /* Window WatchDog */
.word PVD_AVD_IRQHandler /* PVD/AVD through EXTI Line detection */
.word TAMP_STAMP_IRQHandler /* Tamper and TimeStamps through the EXTI line */
.word RTC_WKUP_IRQHandler /* RTC Wakeup through the EXTI line */
.word FLASH_IRQHandler /* FLASH */
.word RCC_IRQHandler /* RCC */
.word EXTI0_IRQHandler /* EXTI Line0 */
.word EXTI1_IRQHandler /* EXTI Line1 */
.word EXTI2_IRQHandler /* EXTI Line2 */
.word EXTI3_IRQHandler /* EXTI Line3 */
.word EXTI4_IRQHandler /* EXTI Line4 */
.word DMA1_Stream0_IRQHandler /* DMA1 Stream 0 */
.word DMA1_Stream1_IRQHandler /* DMA1 Stream 1 */
.word DMA1_Stream2_IRQHandler /* DMA1 Stream 2 */
.word DMA1_Stream3_IRQHandler /* DMA1 Stream 3 */
.word DMA1_Stream4_IRQHandler /* DMA1 Stream 4 */
.word DMA1_Stream5_IRQHandler /* DMA1 Stream 5 */
.word DMA1_Stream6_IRQHandler /* DMA1 Stream 6 */
.word ADC_IRQHandler /* ADC1, ADC2 and ADC3s */
.word FDCAN1_IT0_IRQHandler /* FDCAN1 interrupt line 0 */
.word FDCAN2_IT0_IRQHandler /* FDCAN2 interrupt line 0 */
.word FDCAN1_IT1_IRQHandler /* FDCAN1 interrupt line 1 */
.word FDCAN2_IT1_IRQHandler /* FDCAN2 interrupt line 1 */
.word EXTI9_5_IRQHandler /* External Line[9:5]s */
.word TIM1_BRK_IRQHandler /* TIM1 Break interrupt */
.word TIM1_UP_IRQHandler /* TIM1 Update interrupt */
.word TIM1_TRG_COM_IRQHandler /* TIM1 Trigger and Commutation interrupt */
.word TIM1_CC_IRQHandler /* TIM1 Capture Compare */
.word TIM2_IRQHandler /* TIM2 */
.word TIM3_IRQHandler /* TIM3 */
.word TIM4_IRQHandler /* TIM4 */
.word I2C1_EV_IRQHandler /* I2C1 Event */
.word I2C1_ER_IRQHandler /* I2C1 Error */
.word I2C2_EV_IRQHandler /* I2C2 Event */
.word I2C2_ER_IRQHandler /* I2C2 Error */
.word SPI1_IRQHandler /* SPI1 */
.word SPI2_IRQHandler /* SPI2 */
.word USART1_IRQHandler /* USART1 */
.word USART2_IRQHandler /* USART2 */
.word USART3_IRQHandler /* USART3 */
.word EXTI15_10_IRQHandler /* External Line[15:10]s */
.word RTC_Alarm_IRQHandler /* RTC Alarm (A and B) through EXTI Line */
.word 0 /* Reserved */
.word TIM8_BRK_TIM12_IRQHandler /* TIM8 Break and TIM12 */
.word TIM8_UP_TIM13_IRQHandler /* TIM8 Update and TIM13 */
.word TIM8_TRG_COM_TIM14_IRQHandler /* TIM8 Trigger and Commutation and TIM14 */
.word TIM8_CC_IRQHandler /* TIM8 Capture Compare */
.word DMA1_Stream7_IRQHandler /* DMA1 Stream7 */
.word FMC_IRQHandler /* FMC */
.word SDMMC1_IRQHandler /* SDMMC1 */
.word TIM5_IRQHandler /* TIM5 */
.word SPI3_IRQHandler /* SPI3 */
.word UART4_IRQHandler /* UART4 */
.word UART5_IRQHandler /* UART5 */
.word TIM6_DAC_IRQHandler /* TIM6 and DAC1&2 underrun errors */
.word TIM7_IRQHandler /* TIM7 */
.word DMA2_Stream0_IRQHandler /* DMA2 Stream 0 */
.word DMA2_Stream1_IRQHandler /* DMA2 Stream 1 */
.word DMA2_Stream2_IRQHandler /* DMA2 Stream 2 */
.word DMA2_Stream3_IRQHandler /* DMA2 Stream 3 */
.word DMA2_Stream4_IRQHandler /* DMA2 Stream 4 */
.word ETH_IRQHandler /* Ethernet */
.word ETH_WKUP_IRQHandler /* Ethernet Wakeup through EXTI line */
.word FDCAN_CAL_IRQHandler /* FDCAN calibration unit interrupt*/
.word 0 /* Reserved */
.word 0 /* Reserved */
.word 0 /* Reserved */
.word 0 /* Reserved */
.word DMA2_Stream5_IRQHandler /* DMA2 Stream 5 */
.word DMA2_Stream6_IRQHandler /* DMA2 Stream 6 */
.word DMA2_Stream7_IRQHandler /* DMA2 Stream 7 */
.word USART6_IRQHandler /* USART6 */
.word I2C3_EV_IRQHandler /* I2C3 event */
.word I2C3_ER_IRQHandler /* I2C3 error */
.word OTG_HS_EP1_OUT_IRQHandler /* USB OTG HS End Point 1 Out */
.word OTG_HS_EP1_IN_IRQHandler /* USB OTG HS End Point 1 In */
.word OTG_HS_WKUP_IRQHandler /* USB OTG HS Wakeup through EXTI */
.word OTG_HS_IRQHandler /* USB OTG HS */
.word DCMI_IRQHandler /* DCMI */
.word CRYP_IRQHandler /* Crypto */
.word HASH_RNG_IRQHandler /* Hash and Rng */
.word FPU_IRQHandler /* FPU */
.word UART7_IRQHandler /* UART7 */
.word UART8_IRQHandler /* UART8 */
.word SPI4_IRQHandler /* SPI4 */
.word SPI5_IRQHandler /* SPI5 */
.word SPI6_IRQHandler /* SPI6 */
.word SAI1_IRQHandler /* SAI1 */
.word LTDC_IRQHandler /* LTDC */
.word LTDC_ER_IRQHandler /* LTDC error */
.word DMA2D_IRQHandler /* DMA2D */
.word SAI2_IRQHandler /* SAI2 */
.word QUADSPI_IRQHandler /* QUADSPI */
.word LPTIM1_IRQHandler /* LPTIM1 */
.word CEC_IRQHandler /* HDMI_CEC */
.word I2C4_EV_IRQHandler /* I2C4 Event */
.word I2C4_ER_IRQHandler /* I2C4 Error */
.word SPDIF_RX_IRQHandler /* SPDIF_RX */
.word OTG_FS_EP1_OUT_IRQHandler /* USB OTG FS End Point 1 Out */
.word OTG_FS_EP1_IN_IRQHandler /* USB OTG FS End Point 1 In */
.word OTG_FS_WKUP_IRQHandler /* USB OTG FS Wakeup through EXTI */
.word OTG_FS_IRQHandler /* USB OTG FS */
.word DMAMUX1_OVR_IRQHandler /* DMAMUX1 Overrun interrupt */
.word HRTIM1_Master_IRQHandler /* HRTIM Master Timer global Interrupt */
.word HRTIM1_TIMA_IRQHandler /* HRTIM Timer A global Interrupt */
.word HRTIM1_TIMB_IRQHandler /* HRTIM Timer B global Interrupt */
.word HRTIM1_TIMC_IRQHandler /* HRTIM Timer C global Interrupt */
.word HRTIM1_TIMD_IRQHandler /* HRTIM Timer D global Interrupt */
.word HRTIM1_TIME_IRQHandler /* HRTIM Timer E global Interrupt */
.word HRTIM1_FLT_IRQHandler /* HRTIM Fault global Interrupt */
.word DFSDM1_FLT0_IRQHandler /* DFSDM Filter0 Interrupt */
.word DFSDM1_FLT1_IRQHandler /* DFSDM Filter1 Interrupt */
.word DFSDM1_FLT2_IRQHandler /* DFSDM Filter2 Interrupt */
.word DFSDM1_FLT3_IRQHandler /* DFSDM Filter3 Interrupt */
.word SAI3_IRQHandler /* SAI3 global Interrupt */
.word SWPMI1_IRQHandler /* Serial Wire Interface 1 global interrupt */
.word TIM15_IRQHandler /* TIM15 global Interrupt */
.word TIM16_IRQHandler /* TIM16 global Interrupt */
.word TIM17_IRQHandler /* TIM17 global Interrupt */
.word MDIOS_WKUP_IRQHandler /* MDIOS Wakeup Interrupt */
.word MDIOS_IRQHandler /* MDIOS global Interrupt */
.word JPEG_IRQHandler /* JPEG global Interrupt */
.word MDMA_IRQHandler /* MDMA global Interrupt */
.word 0 /* Reserved */
.word SDMMC2_IRQHandler /* SDMMC2 global Interrupt */
.word HSEM1_IRQHandler /* HSEM1 global Interrupt */
.word 0 /* Reserved */
.word ADC3_IRQHandler /* ADC3 global Interrupt */
.word DMAMUX2_OVR_IRQHandler /* DMAMUX Overrun interrupt */
.word BDMA_Channel0_IRQHandler /* BDMA Channel 0 global Interrupt */
.word BDMA_Channel1_IRQHandler /* BDMA Channel 1 global Interrupt */
.word BDMA_Channel2_IRQHandler /* BDMA Channel 2 global Interrupt */
.word BDMA_Channel3_IRQHandler /* BDMA Channel 3 global Interrupt */
.word BDMA_Channel4_IRQHandler /* BDMA Channel 4 global Interrupt */
.word BDMA_Channel5_IRQHandler /* BDMA Channel 5 global Interrupt */
.word BDMA_Channel6_IRQHandler /* BDMA Channel 6 global Interrupt */
.word BDMA_Channel7_IRQHandler /* BDMA Channel 7 global Interrupt */
.word COMP1_IRQHandler /* COMP1 global Interrupt */
.word LPTIM2_IRQHandler /* LP TIM2 global interrupt */
.word LPTIM3_IRQHandler /* LP TIM3 global interrupt */
.word LPTIM4_IRQHandler /* LP TIM4 global interrupt */
.word LPTIM5_IRQHandler /* LP TIM5 global interrupt */
.word LPUART1_IRQHandler /* LP UART1 interrupt */
.word 0 /* Reserved */
.word CRS_IRQHandler /* Clock Recovery Global Interrupt */
.word ECC_IRQHandler /* ECC diagnostic Global Interrupt */
.word SAI4_IRQHandler /* SAI4 global interrupt */
.word 0 /* Reserved */
.word 0 /* Reserved */
.word WAKEUP_PIN_IRQHandler /* Interrupt for all 6 wake-up pins */
/*******************************************************************************
*
* Provide weak aliases for each Exception handler to the Default_Handler.
* As they are weak aliases, any function with the same name will override
* this definition.
*
*******************************************************************************/
.weak NMI_Handler
.thumb_set NMI_Handler,Default_Handler
.weak HardFault_Handler
.thumb_set HardFault_Handler,Default_Handler
.weak MemManage_Handler
.thumb_set MemManage_Handler,Default_Handler
.weak BusFault_Handler
.thumb_set BusFault_Handler,Default_Handler
.weak UsageFault_Handler
.thumb_set UsageFault_Handler,Default_Handler
.weak SVC_Handler
.thumb_set SVC_Handler,Default_Handler
.weak DebugMon_Handler
.thumb_set DebugMon_Handler,Default_Handler
.weak PendSV_Handler
.thumb_set PendSV_Handler,Default_Handler
.weak SysTick_Handler
.thumb_set SysTick_Handler,Default_Handler
.weak WWDG_IRQHandler
.thumb_set WWDG_IRQHandler,Default_Handler
.weak PVD_AVD_IRQHandler
.thumb_set PVD_AVD_IRQHandler,Default_Handler
.weak TAMP_STAMP_IRQHandler
.thumb_set TAMP_STAMP_IRQHandler,Default_Handler
.weak RTC_WKUP_IRQHandler
.thumb_set RTC_WKUP_IRQHandler,Default_Handler
.weak FLASH_IRQHandler
.thumb_set FLASH_IRQHandler,Default_Handler
.weak RCC_IRQHandler
.thumb_set RCC_IRQHandler,Default_Handler
.weak EXTI0_IRQHandler
.thumb_set EXTI0_IRQHandler,Default_Handler
.weak EXTI1_IRQHandler
.thumb_set EXTI1_IRQHandler,Default_Handler
.weak EXTI2_IRQHandler
.thumb_set EXTI2_IRQHandler,Default_Handler
.weak EXTI3_IRQHandler
.thumb_set EXTI3_IRQHandler,Default_Handler
.weak EXTI4_IRQHandler
.thumb_set EXTI4_IRQHandler,Default_Handler
.weak DMA1_Stream0_IRQHandler
.thumb_set DMA1_Stream0_IRQHandler,Default_Handler
.weak DMA1_Stream1_IRQHandler
.thumb_set DMA1_Stream1_IRQHandler,Default_Handler
.weak DMA1_Stream2_IRQHandler
.thumb_set DMA1_Stream2_IRQHandler,Default_Handler
.weak DMA1_Stream3_IRQHandler
.thumb_set DMA1_Stream3_IRQHandler,Default_Handler
.weak DMA1_Stream4_IRQHandler
.thumb_set DMA1_Stream4_IRQHandler,Default_Handler
.weak DMA1_Stream5_IRQHandler
.thumb_set DMA1_Stream5_IRQHandler,Default_Handler
.weak DMA1_Stream6_IRQHandler
.thumb_set DMA1_Stream6_IRQHandler,Default_Handler
.weak ADC_IRQHandler
.thumb_set ADC_IRQHandler,Default_Handler
.weak FDCAN1_IT0_IRQHandler
.thumb_set FDCAN1_IT0_IRQHandler,Default_Handler
.weak FDCAN2_IT0_IRQHandler
.thumb_set FDCAN2_IT0_IRQHandler,Default_Handler
.weak FDCAN1_IT1_IRQHandler
.thumb_set FDCAN1_IT1_IRQHandler,Default_Handler
.weak FDCAN2_IT1_IRQHandler
.thumb_set FDCAN2_IT1_IRQHandler,Default_Handler
.weak EXTI9_5_IRQHandler
.thumb_set EXTI9_5_IRQHandler,Default_Handler
.weak TIM1_BRK_IRQHandler
.thumb_set TIM1_BRK_IRQHandler,Default_Handler
.weak TIM1_UP_IRQHandler
.thumb_set TIM1_UP_IRQHandler,Default_Handler
.weak TIM1_TRG_COM_IRQHandler
.thumb_set TIM1_TRG_COM_IRQHandler,Default_Handler
.weak TIM1_CC_IRQHandler
.thumb_set TIM1_CC_IRQHandler,Default_Handler
.weak TIM2_IRQHandler
.thumb_set TIM2_IRQHandler,Default_Handler
.weak TIM3_IRQHandler
.thumb_set TIM3_IRQHandler,Default_Handler
.weak TIM4_IRQHandler
.thumb_set TIM4_IRQHandler,Default_Handler
.weak I2C1_EV_IRQHandler
.thumb_set I2C1_EV_IRQHandler,Default_Handler
.weak I2C1_ER_IRQHandler
.thumb_set I2C1_ER_IRQHandler,Default_Handler
.weak I2C2_EV_IRQHandler
.thumb_set I2C2_EV_IRQHandler,Default_Handler
.weak I2C2_ER_IRQHandler
.thumb_set I2C2_ER_IRQHandler,Default_Handler
.weak SPI1_IRQHandler
.thumb_set SPI1_IRQHandler,Default_Handler
.weak SPI2_IRQHandler
.thumb_set SPI2_IRQHandler,Default_Handler
.weak USART1_IRQHandler
.thumb_set USART1_IRQHandler,Default_Handler
.weak USART2_IRQHandler
.thumb_set USART2_IRQHandler,Default_Handler
.weak USART3_IRQHandler
.thumb_set USART3_IRQHandler,Default_Handler
.weak EXTI15_10_IRQHandler
.thumb_set EXTI15_10_IRQHandler,Default_Handler
.weak RTC_Alarm_IRQHandler
.thumb_set RTC_Alarm_IRQHandler,Default_Handler
.weak TIM8_BRK_TIM12_IRQHandler
.thumb_set TIM8_BRK_TIM12_IRQHandler,Default_Handler
.weak TIM8_UP_TIM13_IRQHandler
.thumb_set TIM8_UP_TIM13_IRQHandler,Default_Handler
.weak TIM8_TRG_COM_TIM14_IRQHandler
.thumb_set TIM8_TRG_COM_TIM14_IRQHandler,Default_Handler
.weak TIM8_CC_IRQHandler
.thumb_set TIM8_CC_IRQHandler,Default_Handler
.weak DMA1_Stream7_IRQHandler
.thumb_set DMA1_Stream7_IRQHandler,Default_Handler
.weak FMC_IRQHandler
.thumb_set FMC_IRQHandler,Default_Handler
.weak SDMMC1_IRQHandler
.thumb_set SDMMC1_IRQHandler,Default_Handler
.weak TIM5_IRQHandler
.thumb_set TIM5_IRQHandler,Default_Handler
.weak SPI3_IRQHandler
.thumb_set SPI3_IRQHandler,Default_Handler
.weak UART4_IRQHandler
.thumb_set UART4_IRQHandler,Default_Handler
.weak UART5_IRQHandler
.thumb_set UART5_IRQHandler,Default_Handler
.weak TIM6_DAC_IRQHandler
.thumb_set TIM6_DAC_IRQHandler,Default_Handler
.weak TIM7_IRQHandler
.thumb_set TIM7_IRQHandler,Default_Handler
.weak DMA2_Stream0_IRQHandler
.thumb_set DMA2_Stream0_IRQHandler,Default_Handler
.weak DMA2_Stream1_IRQHandler
.thumb_set DMA2_Stream1_IRQHandler,Default_Handler
.weak DMA2_Stream2_IRQHandler
.thumb_set DMA2_Stream2_IRQHandler,Default_Handler
.weak DMA2_Stream3_IRQHandler
.thumb_set DMA2_Stream3_IRQHandler,Default_Handler
.weak DMA2_Stream4_IRQHandler
.thumb_set DMA2_Stream4_IRQHandler,Default_Handler
.weak ETH_IRQHandler
.thumb_set ETH_IRQHandler,Default_Handler
.weak ETH_WKUP_IRQHandler
.thumb_set ETH_WKUP_IRQHandler,Default_Handler
.weak FDCAN_CAL_IRQHandler
.thumb_set FDCAN_CAL_IRQHandler,Default_Handler
.weak DMA2_Stream5_IRQHandler
.thumb_set DMA2_Stream5_IRQHandler,Default_Handler
.weak DMA2_Stream6_IRQHandler
.thumb_set DMA2_Stream6_IRQHandler,Default_Handler
.weak DMA2_Stream7_IRQHandler
.thumb_set DMA2_Stream7_IRQHandler,Default_Handler
.weak USART6_IRQHandler
.thumb_set USART6_IRQHandler,Default_Handler
.weak I2C3_EV_IRQHandler
.thumb_set I2C3_EV_IRQHandler,Default_Handler
.weak I2C3_ER_IRQHandler
.thumb_set I2C3_ER_IRQHandler,Default_Handler
.weak OTG_HS_EP1_OUT_IRQHandler
.thumb_set OTG_HS_EP1_OUT_IRQHandler,Default_Handler
.weak OTG_HS_EP1_IN_IRQHandler
.thumb_set OTG_HS_EP1_IN_IRQHandler,Default_Handler
.weak OTG_HS_WKUP_IRQHandler
.thumb_set OTG_HS_WKUP_IRQHandler,Default_Handler
.weak OTG_HS_IRQHandler
.thumb_set OTG_HS_IRQHandler,Default_Handler
.weak DCMI_IRQHandler
.thumb_set DCMI_IRQHandler,Default_Handler
.weak CRYP_IRQHandler
.thumb_set CRYP_IRQHandler,Default_Handler
.weak HASH_RNG_IRQHandler
.thumb_set HASH_RNG_IRQHandler,Default_Handler
.weak FPU_IRQHandler
.thumb_set FPU_IRQHandler,Default_Handler
.weak UART7_IRQHandler
.thumb_set UART7_IRQHandler,Default_Handler
.weak UART8_IRQHandler
.thumb_set UART8_IRQHandler,Default_Handler
.weak SPI4_IRQHandler
.thumb_set SPI4_IRQHandler,Default_Handler
.weak SPI5_IRQHandler
.thumb_set SPI5_IRQHandler,Default_Handler
.weak SPI6_IRQHandler
.thumb_set SPI6_IRQHandler,Default_Handler
.weak SAI1_IRQHandler
.thumb_set SAI1_IRQHandler,Default_Handler
.weak LTDC_IRQHandler
.thumb_set LTDC_IRQHandler,Default_Handler
.weak LTDC_ER_IRQHandler
.thumb_set LTDC_ER_IRQHandler,Default_Handler
.weak DMA2D_IRQHandler
.thumb_set DMA2D_IRQHandler,Default_Handler
.weak SAI2_IRQHandler
.thumb_set SAI2_IRQHandler,Default_Handler
.weak QUADSPI_IRQHandler
.thumb_set QUADSPI_IRQHandler,Default_Handler
.weak LPTIM1_IRQHandler
.thumb_set LPTIM1_IRQHandler,Default_Handler
.weak CEC_IRQHandler
.thumb_set CEC_IRQHandler,Default_Handler
.weak I2C4_EV_IRQHandler
.thumb_set I2C4_EV_IRQHandler,Default_Handler
.weak I2C4_ER_IRQHandler
.thumb_set I2C4_ER_IRQHandler,Default_Handler
.weak SPDIF_RX_IRQHandler
.thumb_set SPDIF_RX_IRQHandler,Default_Handler
.weak OTG_FS_EP1_OUT_IRQHandler
.thumb_set OTG_FS_EP1_OUT_IRQHandler,Default_Handler
.weak OTG_FS_EP1_IN_IRQHandler
.thumb_set OTG_FS_EP1_IN_IRQHandler,Default_Handler
.weak OTG_FS_WKUP_IRQHandler
.thumb_set OTG_FS_WKUP_IRQHandler,Default_Handler
.weak OTG_FS_IRQHandler
.thumb_set OTG_FS_IRQHandler,Default_Handler
.weak DMAMUX1_OVR_IRQHandler
.thumb_set DMAMUX1_OVR_IRQHandler,Default_Handler
.weak HRTIM1_Master_IRQHandler
.thumb_set HRTIM1_Master_IRQHandler,Default_Handler
.weak HRTIM1_TIMA_IRQHandler
.thumb_set HRTIM1_TIMA_IRQHandler,Default_Handler
.weak HRTIM1_TIMB_IRQHandler
.thumb_set HRTIM1_TIMB_IRQHandler,Default_Handler
.weak HRTIM1_TIMC_IRQHandler
.thumb_set HRTIM1_TIMC_IRQHandler,Default_Handler
.weak HRTIM1_TIMD_IRQHandler
.thumb_set HRTIM1_TIMD_IRQHandler,Default_Handler
.weak HRTIM1_TIME_IRQHandler
.thumb_set HRTIM1_TIME_IRQHandler,Default_Handler
.weak HRTIM1_FLT_IRQHandler
.thumb_set HRTIM1_FLT_IRQHandler,Default_Handler
.weak DFSDM1_FLT0_IRQHandler
.thumb_set DFSDM1_FLT0_IRQHandler,Default_Handler
.weak DFSDM1_FLT1_IRQHandler
.thumb_set DFSDM1_FLT1_IRQHandler,Default_Handler
.weak DFSDM1_FLT2_IRQHandler
.thumb_set DFSDM1_FLT2_IRQHandler,Default_Handler
.weak DFSDM1_FLT3_IRQHandler
.thumb_set DFSDM1_FLT3_IRQHandler,Default_Handler
.weak SAI3_IRQHandler
.thumb_set SAI3_IRQHandler,Default_Handler
.weak SWPMI1_IRQHandler
.thumb_set SWPMI1_IRQHandler,Default_Handler
.weak TIM15_IRQHandler
.thumb_set TIM15_IRQHandler,Default_Handler
.weak TIM16_IRQHandler
.thumb_set TIM16_IRQHandler,Default_Handler
.weak TIM17_IRQHandler
.thumb_set TIM17_IRQHandler,Default_Handler
.weak MDIOS_WKUP_IRQHandler
.thumb_set MDIOS_WKUP_IRQHandler,Default_Handler
.weak MDIOS_IRQHandler
.thumb_set MDIOS_IRQHandler,Default_Handler
.weak JPEG_IRQHandler
.thumb_set JPEG_IRQHandler,Default_Handler
.weak MDMA_IRQHandler
.thumb_set MDMA_IRQHandler,Default_Handler
.weak SDMMC2_IRQHandler
.thumb_set SDMMC2_IRQHandler,Default_Handler
.weak HSEM1_IRQHandler
.thumb_set HSEM1_IRQHandler,Default_Handler
.weak ADC3_IRQHandler
.thumb_set ADC3_IRQHandler,Default_Handler
.weak DMAMUX2_OVR_IRQHandler
.thumb_set DMAMUX2_OVR_IRQHandler,Default_Handler
.weak BDMA_Channel0_IRQHandler
.thumb_set BDMA_Channel0_IRQHandler,Default_Handler
.weak BDMA_Channel1_IRQHandler
.thumb_set BDMA_Channel1_IRQHandler,Default_Handler
.weak BDMA_Channel2_IRQHandler
.thumb_set BDMA_Channel2_IRQHandler,Default_Handler
.weak BDMA_Channel3_IRQHandler
.thumb_set BDMA_Channel3_IRQHandler,Default_Handler
.weak BDMA_Channel4_IRQHandler
.thumb_set BDMA_Channel4_IRQHandler,Default_Handler
.weak BDMA_Channel5_IRQHandler
.thumb_set BDMA_Channel5_IRQHandler,Default_Handler
.weak BDMA_Channel6_IRQHandler
.thumb_set BDMA_Channel6_IRQHandler,Default_Handler
.weak BDMA_Channel7_IRQHandler
.thumb_set BDMA_Channel7_IRQHandler,Default_Handler
.weak COMP1_IRQHandler
.thumb_set COMP1_IRQHandler,Default_Handler
.weak LPTIM2_IRQHandler
.thumb_set LPTIM2_IRQHandler,Default_Handler
.weak LPTIM3_IRQHandler
.thumb_set LPTIM3_IRQHandler,Default_Handler
.weak LPTIM4_IRQHandler
.thumb_set LPTIM4_IRQHandler,Default_Handler
.weak LPTIM5_IRQHandler
.thumb_set LPTIM5_IRQHandler,Default_Handler
.weak LPUART1_IRQHandler
.thumb_set LPUART1_IRQHandler,Default_Handler
.weak CRS_IRQHandler
.thumb_set CRS_IRQHandler,Default_Handler
.weak ECC_IRQHandler
.thumb_set ECC_IRQHandler,Default_Handler
.weak SAI4_IRQHandler
.thumb_set SAI4_IRQHandler,Default_Handler
.weak WAKEUP_PIN_IRQHandler
.thumb_set WAKEUP_PIN_IRQHandler,Default_Handler
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,386 @@
/**
******************************************************************************
* @file system_stm32h7xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-Mx Device Peripheral Access Layer System Source File.
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32h7xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32h7xx_system
* @{
*/
/** @addtogroup STM32H7xx_System_Private_Includes
* @{
*/
#include "stm32h7xx.h"
#include <math.h>
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)25000000) /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (CSI_VALUE)
#define CSI_VALUE ((uint32_t)4000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* CSI_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)64000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Defines
* @{
*/
/************************* Miscellaneous Configuration ************************/
/*!< Uncomment the following line if you need to use initialized data in D2 domain SRAM (AHB SRAM) */
/* #define DATA_IN_D2_SRAM */
/*!< Uncomment the following line if you need to relocate your vector Table in
Internal SRAM. */
/* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET 0x00000000UL /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Variables
* @{
*/
/* This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = 64000000;
uint32_t SystemD2Clock = 64000000;
const uint8_t D1CorePrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @addtogroup STM32H7xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system
* Initialize the FPU setting and vector table location
* configuration.
* @param None
* @retval None
*/
void SystemInit (void)
{
#if defined (DATA_IN_D2_SRAM)
__IO uint32_t tmpreg;
#endif /* DATA_IN_D2_SRAM */
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << (10*2))|(3UL << (11*2))); /* set CP10 and CP11 Full Access */
#endif
/* Reset the RCC clock configuration to the default reset state ------------*/
/* Set HSION bit */
RCC->CR |= RCC_CR_HSION;
/* Reset CFGR register */
RCC->CFGR = 0x00000000;
/* Reset HSEON, CSSON , CSION,RC48ON, CSIKERON PLL1ON, PLL2ON and PLL3ON bits */
RCC->CR &= 0xEAF6ED7FU;
#if defined(D3_SRAM_BASE)
/* Reset D1CFGR register */
RCC->D1CFGR = 0x00000000;
/* Reset D2CFGR register */
RCC->D2CFGR = 0x00000000;
/* Reset D3CFGR register */
RCC->D3CFGR = 0x00000000;
#else
/* Reset CDCFGR1 register */
RCC->CDCFGR1 = 0x00000000;
/* Reset CDCFGR2 register */
RCC->CDCFGR2 = 0x00000000;
/* Reset SRDCFGR register */
RCC->SRDCFGR = 0x00000000;
#endif
/* Reset PLLCKSELR register */
RCC->PLLCKSELR = 0x00000000;
/* Reset PLLCFGR register */
RCC->PLLCFGR = 0x00000000;
/* Reset PLL1DIVR register */
RCC->PLL1DIVR = 0x00000000;
/* Reset PLL1FRACR register */
RCC->PLL1FRACR = 0x00000000;
/* Reset PLL2DIVR register */
RCC->PLL2DIVR = 0x00000000;
/* Reset PLL2FRACR register */
RCC->PLL2FRACR = 0x00000000;
/* Reset PLL3DIVR register */
RCC->PLL3DIVR = 0x00000000;
/* Reset PLL3FRACR register */
RCC->PLL3FRACR = 0x00000000;
/* Reset HSEBYP bit */
RCC->CR &= 0xFFFBFFFFU;
/* Disable all interrupts */
RCC->CIER = 0x00000000;
#if defined (DATA_IN_D2_SRAM)
/* in case of initialized data in D2 SRAM (AHB SRAM) , enable the D2 SRAM clock ((AHB SRAM clock) */
#if defined(RCC_AHB2ENR_D2SRAM1EN)
RCC->AHB2ENR |= (RCC_AHB2ENR_D2SRAM1EN | RCC_AHB2ENR_D2SRAM2EN | RCC_AHB2ENR_D2SRAM3EN);
#else
RCC->AHB2ENR |= (RCC_AHB2ENR_AHBSRAM1EN | RCC_AHB2ENR_AHBSRAM2EN);
#endif /* RCC_AHB2ENR_D2SRAM1EN */
tmpreg = RCC->AHB2ENR;
(void) tmpreg;
#endif /* DATA_IN_D2_SRAM */
#if defined(DUAL_CORE) && defined(CORE_CM4)
/* Configure the Vector Table location add offset address for cortex-M4 ------------------*/
#ifdef VECT_TAB_SRAM
SCB->VTOR = D2_AHBSRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#else
SCB->VTOR = FLASH_BANK2_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
#endif /* VECT_TAB_SRAM */
#else
/* dual core CM7 or single core line */
if((DBGMCU->IDCODE & 0xFFFF0000U) < 0x20000000U)
{
/* if stm32h7 revY*/
/* Change the switch matrix read issuing capability to 1 for the AXI SRAM target (Target 7) */
*((__IO uint32_t*)0x51008108) = 0x000000001U;
}
/* Configure the Vector Table location add offset address for cortex-M7 ------------------*/
#ifdef VECT_TAB_SRAM
SCB->VTOR = D1_AXISRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal D1 AXI-RAM */
#else
SCB->VTOR = FLASH_BANK1_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
#endif
#endif /*DUAL_CORE && CORE_CM4*/
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock , it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is CSI, SystemCoreClock will contain the CSI_VALUE(*)
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(**)
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(***)
* - If SYSCLK source is PLL, SystemCoreClock will contain the CSI_VALUE(*),
* HSI_VALUE(**) or HSE_VALUE(***) multiplied/divided by the PLL factors.
*
* (*) CSI_VALUE is a constant defined in stm32h7xx_hal.h file (default value
* 4 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* (**) HSI_VALUE is a constant defined in stm32h7xx_hal.h file (default value
* 64 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (***)HSE_VALUE is a constant defined in stm32h7xx_hal.h file (default value
* 25 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
* @param None
* @retval None
*/
void SystemCoreClockUpdate (void)
{
uint32_t pllp, pllsource, pllm, pllfracen, hsivalue, tmp;
float_t fracn1, pllvco;
/* Get SYSCLK source -------------------------------------------------------*/
switch (RCC->CFGR & RCC_CFGR_SWS)
{
case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */
SystemCoreClock = (uint32_t) (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV)>> 3));
break;
case RCC_CFGR_SWS_CSI: /* CSI used as system clock source */
SystemCoreClock = CSI_VALUE;
break;
case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */
SystemCoreClock = HSE_VALUE;
break;
case RCC_CFGR_SWS_PLL1: /* PLL1 used as system clock source */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or CSI_VALUE/ PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = (RCC->PLLCKSELR & RCC_PLLCKSELR_PLLSRC);
pllm = ((RCC->PLLCKSELR & RCC_PLLCKSELR_DIVM1)>> 4) ;
pllfracen = ((RCC->PLLCFGR & RCC_PLLCFGR_PLL1FRACEN)>>RCC_PLLCFGR_PLL1FRACEN_Pos);
fracn1 = (float_t)(uint32_t)(pllfracen* ((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1)>> 3));
if (pllm != 0U)
{
switch (pllsource)
{
case RCC_PLLCKSELR_PLLSRC_HSI: /* HSI used as PLL clock source */
hsivalue = (HSI_VALUE >> ((RCC->CR & RCC_CR_HSIDIV)>> 3)) ;
pllvco = ( (float_t)hsivalue / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
case RCC_PLLCKSELR_PLLSRC_CSI: /* CSI used as PLL clock source */
pllvco = ((float_t)CSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
case RCC_PLLCKSELR_PLLSRC_HSE: /* HSE used as PLL clock source */
pllvco = ((float_t)HSE_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
default:
pllvco = ((float_t)CSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1/(float_t)0x2000) +(float_t)1 );
break;
}
pllp = (((RCC->PLL1DIVR & RCC_PLL1DIVR_P1) >>9) + 1U ) ;
SystemCoreClock = (uint32_t)(float_t)(pllvco/(float_t)pllp);
}
else
{
SystemCoreClock = 0U;
}
break;
default:
SystemCoreClock = CSI_VALUE;
break;
}
/* Compute SystemClock frequency --------------------------------------------------*/
#if defined (RCC_D1CFGR_D1CPRE)
tmp = D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE)>> RCC_D1CFGR_D1CPRE_Pos];
/* SystemCoreClock frequency : CM7 CPU frequency */
SystemCoreClock >>= tmp;
/* SystemD2Clock frequency : CM4 CPU, AXI and AHBs Clock frequency */
SystemD2Clock = (SystemCoreClock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE)>> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
#else
tmp = D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE)>> RCC_CDCFGR1_CDCPRE_Pos];
/* SystemCoreClock frequency : CM7 CPU frequency */
SystemCoreClock >>= tmp;
/* SystemD2Clock frequency : AXI and AHBs Clock frequency */
SystemD2Clock = (SystemCoreClock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)>> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
#endif
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -0,0 +1,865 @@
/**************************************************************************//**
* @file cmsis_armcc.h
* @brief CMSIS compiler ARMCC (Arm Compiler 5) header file
* @version V5.0.4
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_ARMCC_H
#define __CMSIS_ARMCC_H
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677)
#error "Please use Arm Compiler Toolchain V4.0.677 or later!"
#endif
/* CMSIS compiler control architecture macros */
#if ((defined (__TARGET_ARCH_6_M ) && (__TARGET_ARCH_6_M == 1)) || \
(defined (__TARGET_ARCH_6S_M ) && (__TARGET_ARCH_6S_M == 1)) )
#define __ARM_ARCH_6M__ 1
#endif
#if (defined (__TARGET_ARCH_7_M ) && (__TARGET_ARCH_7_M == 1))
#define __ARM_ARCH_7M__ 1
#endif
#if (defined (__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1))
#define __ARM_ARCH_7EM__ 1
#endif
/* __ARM_ARCH_8M_BASE__ not applicable */
/* __ARM_ARCH_8M_MAIN__ not applicable */
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE __inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static __inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE static __forceinline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __declspec(noreturn)
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT __packed struct
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION __packed union
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
#define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x)))
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr)))
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr)))
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
/**
\brief Enable IRQ Interrupts
\details Enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
/* intrinsic void __enable_irq(); */
/**
\brief Disable IRQ Interrupts
\details Disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
/* intrinsic void __disable_irq(); */
/**
\brief Get Control Register
\details Returns the content of the Control Register.
\return Control Register value
*/
__STATIC_INLINE uint32_t __get_CONTROL(void)
{
register uint32_t __regControl __ASM("control");
return(__regControl);
}
/**
\brief Set Control Register
\details Writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__STATIC_INLINE void __set_CONTROL(uint32_t control)
{
register uint32_t __regControl __ASM("control");
__regControl = control;
}
/**
\brief Get IPSR Register
\details Returns the content of the IPSR Register.
\return IPSR Register value
*/
__STATIC_INLINE uint32_t __get_IPSR(void)
{
register uint32_t __regIPSR __ASM("ipsr");
return(__regIPSR);
}
/**
\brief Get APSR Register
\details Returns the content of the APSR Register.
\return APSR Register value
*/
__STATIC_INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
/**
\brief Get xPSR Register
\details Returns the content of the xPSR Register.
\return xPSR Register value
*/
__STATIC_INLINE uint32_t __get_xPSR(void)
{
register uint32_t __regXPSR __ASM("xpsr");
return(__regXPSR);
}
/**
\brief Get Process Stack Pointer
\details Returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t __regProcessStackPointer __ASM("psp");
return(__regProcessStackPointer);
}
/**
\brief Set Process Stack Pointer
\details Assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
register uint32_t __regProcessStackPointer __ASM("psp");
__regProcessStackPointer = topOfProcStack;
}
/**
\brief Get Main Stack Pointer
\details Returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t __regMainStackPointer __ASM("msp");
return(__regMainStackPointer);
}
/**
\brief Set Main Stack Pointer
\details Assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
register uint32_t __regMainStackPointer __ASM("msp");
__regMainStackPointer = topOfMainStack;
}
/**
\brief Get Priority Mask
\details Returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__STATIC_INLINE uint32_t __get_PRIMASK(void)
{
register uint32_t __regPriMask __ASM("primask");
return(__regPriMask);
}
/**
\brief Set Priority Mask
\details Assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
register uint32_t __regPriMask __ASM("primask");
__regPriMask = (priMask);
}
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief Enable FIQ
\details Enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/**
\brief Disable FIQ
\details Disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/**
\brief Get Base Priority
\details Returns the current value of the Base Priority register.
\return Base Priority register value
*/
__STATIC_INLINE uint32_t __get_BASEPRI(void)
{
register uint32_t __regBasePri __ASM("basepri");
return(__regBasePri);
}
/**
\brief Set Base Priority
\details Assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
{
register uint32_t __regBasePri __ASM("basepri");
__regBasePri = (basePri & 0xFFU);
}
/**
\brief Set Base Priority with condition
\details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
or the new value increases the BASEPRI priority level.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri)
{
register uint32_t __regBasePriMax __ASM("basepri_max");
__regBasePriMax = (basePri & 0xFFU);
}
/**
\brief Get Fault Mask
\details Returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
register uint32_t __regFaultMask __ASM("faultmask");
return(__regFaultMask);
}
/**
\brief Set Fault Mask
\details Assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
register uint32_t __regFaultMask __ASM("faultmask");
__regFaultMask = (faultMask & (uint32_t)1U);
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Get FPSCR
\details Returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0U);
#endif
}
/**
\brief Set FPSCR
\details Assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#else
(void)fpscr;
#endif
}
/*@} end of CMSIS_Core_RegAccFunctions */
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
/**
\brief No Operation
\details No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/**
\brief Wait For Interrupt
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
*/
#define __WFI __wfi
/**
\brief Wait For Event
\details Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/**
\brief Send Event
\details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/**
\brief Instruction Synchronization Barrier
\details Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or memory,
after the instruction has been completed.
*/
#define __ISB() do {\
__schedule_barrier();\
__isb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Data Synchronization Barrier
\details Acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() do {\
__schedule_barrier();\
__dsb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Data Memory Barrier
\details Ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() do {\
__schedule_barrier();\
__dmb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value)
{
revsh r0, r0
bx lr
}
#endif
/**
\brief Rotate Right in unsigned value (32 bit)
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
#define __ROR __ror
/**
\brief Breakpoint
\details Causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __breakpoint(value)
/**
\brief Reverse bit order of value
\details Reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __RBIT __rbit
#else
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
result = value; /* r will be reversed bits of v; first get LSB of v */
for (value >>= 1U; value != 0U; value >>= 1U)
{
result <<= 1U;
result |= value & 1U;
s--;
}
result <<= s; /* shift when v's highest bits are zero */
return result;
}
#endif
/**
\brief Count leading zeros
\details Counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief LDR Exclusive (8 bit)
\details Executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
#else
#define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (16 bit)
\details Executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
#else
#define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (32 bit)
\details Executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
#else
#define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief STR Exclusive (8 bit)
\details Executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXB(value, ptr) __strex(value, ptr)
#else
#define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (16 bit)
\details Executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXH(value, ptr) __strex(value, ptr)
#else
#define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (32 bit)
\details Executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXW(value, ptr) __strex(value, ptr)
#else
#define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief Remove the exclusive lock
\details Removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/**
\brief Rotate Right with Extend (32 bit)
\details Moves each bit of a bitstring right by one bit.
The carry input is shifted in at the left end of the bitstring.
\param [in] value Value to rotate
\return Rotated value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value)
{
rrx r0, r0
bx lr
}
#endif
/**
\brief LDRT Unprivileged (8 bit)
\details Executes a Unprivileged LDRT instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr))
/**
\brief LDRT Unprivileged (16 bit)
\details Executes a Unprivileged LDRT instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDRHT(ptr) ((uint16_t) __ldrt(ptr))
/**
\brief LDRT Unprivileged (32 bit)
\details Executes a Unprivileged LDRT instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDRT(ptr) ((uint32_t ) __ldrt(ptr))
/**
\brief STRT Unprivileged (8 bit)
\details Executes a Unprivileged STRT instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRBT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (16 bit)
\details Executes a Unprivileged STRT instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRHT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (32 bit)
\details Executes a Unprivileged STRT instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRT(value, ptr) __strt(value, ptr)
#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat)
{
if ((sat >= 1U) && (sat <= 32U))
{
const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
const int32_t min = -1 - max ;
if (val > max)
{
return max;
}
else if (val < min)
{
return min;
}
}
return val;
}
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat)
{
if (sat <= 31U)
{
const uint32_t max = ((1U << sat) - 1U);
if (val > (int32_t)max)
{
return max;
}
else if (val < 0)
{
return 0U;
}
}
return (uint32_t)val;
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __SADD8 __sadd8
#define __QADD8 __qadd8
#define __SHADD8 __shadd8
#define __UADD8 __uadd8
#define __UQADD8 __uqadd8
#define __UHADD8 __uhadd8
#define __SSUB8 __ssub8
#define __QSUB8 __qsub8
#define __SHSUB8 __shsub8
#define __USUB8 __usub8
#define __UQSUB8 __uqsub8
#define __UHSUB8 __uhsub8
#define __SADD16 __sadd16
#define __QADD16 __qadd16
#define __SHADD16 __shadd16
#define __UADD16 __uadd16
#define __UQADD16 __uqadd16
#define __UHADD16 __uhadd16
#define __SSUB16 __ssub16
#define __QSUB16 __qsub16
#define __SHSUB16 __shsub16
#define __USUB16 __usub16
#define __UQSUB16 __uqsub16
#define __UHSUB16 __uhsub16
#define __SASX __sasx
#define __QASX __qasx
#define __SHASX __shasx
#define __UASX __uasx
#define __UQASX __uqasx
#define __UHASX __uhasx
#define __SSAX __ssax
#define __QSAX __qsax
#define __SHSAX __shsax
#define __USAX __usax
#define __UQSAX __uqsax
#define __UHSAX __uhsax
#define __USAD8 __usad8
#define __USADA8 __usada8
#define __SSAT16 __ssat16
#define __USAT16 __usat16
#define __UXTB16 __uxtb16
#define __UXTAB16 __uxtab16
#define __SXTB16 __sxtb16
#define __SXTAB16 __sxtab16
#define __SMUAD __smuad
#define __SMUADX __smuadx
#define __SMLAD __smlad
#define __SMLADX __smladx
#define __SMLALD __smlald
#define __SMLALDX __smlaldx
#define __SMUSD __smusd
#define __SMUSDX __smusdx
#define __SMLSD __smlsd
#define __SMLSDX __smlsdx
#define __SMLSLD __smlsld
#define __SMLSLDX __smlsldx
#define __SEL __sel
#define __QADD __qadd
#define __QSUB __qsub
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \
((int64_t)(ARG3) << 32U) ) >> 32U))
#endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@} end of group CMSIS_SIMD_intrinsics */
#endif /* __CMSIS_ARMCC_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,266 @@
/**************************************************************************//**
* @file cmsis_compiler.h
* @brief CMSIS compiler generic header file
* @version V5.0.4
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_COMPILER_H
#define __CMSIS_COMPILER_H
#include <stdint.h>
/*
* Arm Compiler 4/5
*/
#if defined ( __CC_ARM )
#include "cmsis_armcc.h"
/*
* Arm Compiler 6 (armclang)
*/
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#include "cmsis_armclang.h"
/*
* GNU Compiler
*/
#elif defined ( __GNUC__ )
#include "cmsis_gcc.h"
/*
* IAR Compiler
*/
#elif defined ( __ICCARM__ )
#include <cmsis_iccarm.h>
/*
* TI Arm Compiler
*/
#elif defined ( __TI_ARM__ )
#include <cmsis_ccs.h>
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __attribute__((packed))
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __attribute__((packed))
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
struct __attribute__((packed)) T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void*)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
#define __RESTRICT
#endif
/*
* TASKING Compiler
*/
#elif defined ( __TASKING__ )
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __packed__
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __packed__
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __packed__
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
struct __packed__ T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __align(x)
#endif
#ifndef __RESTRICT
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
#define __RESTRICT
#endif
/*
* COSMIC Compiler
*/
#elif defined ( __CSMC__ )
#include <cmsis_csm.h>
#ifndef __ASM
#define __ASM _asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
// NO RETURN is automatically detected hence no warning here
#define __NO_RETURN
#endif
#ifndef __USED
#warning No compiler specific solution for __USED. __USED is ignored.
#define __USED
#endif
#ifndef __WEAK
#define __WEAK __weak
#endif
#ifndef __PACKED
#define __PACKED @packed
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT @packed struct
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION @packed union
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
@packed struct T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored.
#define __ALIGNED(x)
#endif
#ifndef __RESTRICT
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
#define __RESTRICT
#endif
#else
#error Unknown compiler.
#endif
#endif /* __CMSIS_COMPILER_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,935 @@
/**************************************************************************//**
* @file cmsis_iccarm.h
* @brief CMSIS compiler ICCARM (IAR Compiler for Arm) header file
* @version V5.0.7
* @date 19. June 2018
******************************************************************************/
//------------------------------------------------------------------------------
//
// Copyright (c) 2017-2018 IAR Systems
//
// Licensed under the Apache License, Version 2.0 (the "License")
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//------------------------------------------------------------------------------
#ifndef __CMSIS_ICCARM_H__
#define __CMSIS_ICCARM_H__
#ifndef __ICCARM__
#error This file should only be compiled by ICCARM
#endif
#pragma system_include
#define __IAR_FT _Pragma("inline=forced") __intrinsic
#if (__VER__ >= 8000000)
#define __ICCARM_V8 1
#else
#define __ICCARM_V8 0
#endif
#ifndef __ALIGNED
#if __ICCARM_V8
#define __ALIGNED(x) __attribute__((aligned(x)))
#elif (__VER__ >= 7080000)
/* Needs IAR language extensions */
#define __ALIGNED(x) __attribute__((aligned(x)))
#else
#warning No compiler specific solution for __ALIGNED.__ALIGNED is ignored.
#define __ALIGNED(x)
#endif
#endif
/* Define compiler macros for CPU architecture, used in CMSIS 5.
*/
#if __ARM_ARCH_6M__ || __ARM_ARCH_7M__ || __ARM_ARCH_7EM__ || __ARM_ARCH_8M_BASE__ || __ARM_ARCH_8M_MAIN__
/* Macros already defined */
#else
#if defined(__ARM8M_MAINLINE__) || defined(__ARM8EM_MAINLINE__)
#define __ARM_ARCH_8M_MAIN__ 1
#elif defined(__ARM8M_BASELINE__)
#define __ARM_ARCH_8M_BASE__ 1
#elif defined(__ARM_ARCH_PROFILE) && __ARM_ARCH_PROFILE == 'M'
#if __ARM_ARCH == 6
#define __ARM_ARCH_6M__ 1
#elif __ARM_ARCH == 7
#if __ARM_FEATURE_DSP
#define __ARM_ARCH_7EM__ 1
#else
#define __ARM_ARCH_7M__ 1
#endif
#endif /* __ARM_ARCH */
#endif /* __ARM_ARCH_PROFILE == 'M' */
#endif
/* Alternativ core deduction for older ICCARM's */
#if !defined(__ARM_ARCH_6M__) && !defined(__ARM_ARCH_7M__) && !defined(__ARM_ARCH_7EM__) && \
!defined(__ARM_ARCH_8M_BASE__) && !defined(__ARM_ARCH_8M_MAIN__)
#if defined(__ARM6M__) && (__CORE__ == __ARM6M__)
#define __ARM_ARCH_6M__ 1
#elif defined(__ARM7M__) && (__CORE__ == __ARM7M__)
#define __ARM_ARCH_7M__ 1
#elif defined(__ARM7EM__) && (__CORE__ == __ARM7EM__)
#define __ARM_ARCH_7EM__ 1
#elif defined(__ARM8M_BASELINE__) && (__CORE == __ARM8M_BASELINE__)
#define __ARM_ARCH_8M_BASE__ 1
#elif defined(__ARM8M_MAINLINE__) && (__CORE == __ARM8M_MAINLINE__)
#define __ARM_ARCH_8M_MAIN__ 1
#elif defined(__ARM8EM_MAINLINE__) && (__CORE == __ARM8EM_MAINLINE__)
#define __ARM_ARCH_8M_MAIN__ 1
#else
#error "Unknown target."
#endif
#endif
#if defined(__ARM_ARCH_6M__) && __ARM_ARCH_6M__==1
#define __IAR_M0_FAMILY 1
#elif defined(__ARM_ARCH_8M_BASE__) && __ARM_ARCH_8M_BASE__==1
#define __IAR_M0_FAMILY 1
#else
#define __IAR_M0_FAMILY 0
#endif
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __NO_RETURN
#if __ICCARM_V8
#define __NO_RETURN __attribute__((__noreturn__))
#else
#define __NO_RETURN _Pragma("object_attribute=__noreturn")
#endif
#endif
#ifndef __PACKED
#if __ICCARM_V8
#define __PACKED __attribute__((packed, aligned(1)))
#else
/* Needs IAR language extensions */
#define __PACKED __packed
#endif
#endif
#ifndef __PACKED_STRUCT
#if __ICCARM_V8
#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
#else
/* Needs IAR language extensions */
#define __PACKED_STRUCT __packed struct
#endif
#endif
#ifndef __PACKED_UNION
#if __ICCARM_V8
#define __PACKED_UNION union __attribute__((packed, aligned(1)))
#else
/* Needs IAR language extensions */
#define __PACKED_UNION __packed union
#endif
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __FORCEINLINE
#define __FORCEINLINE _Pragma("inline=forced")
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __FORCEINLINE __STATIC_INLINE
#endif
#ifndef __UNALIGNED_UINT16_READ
#pragma language=save
#pragma language=extended
__IAR_FT uint16_t __iar_uint16_read(void const *ptr)
{
return *(__packed uint16_t*)(ptr);
}
#pragma language=restore
#define __UNALIGNED_UINT16_READ(PTR) __iar_uint16_read(PTR)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#pragma language=save
#pragma language=extended
__IAR_FT void __iar_uint16_write(void const *ptr, uint16_t val)
{
*(__packed uint16_t*)(ptr) = val;;
}
#pragma language=restore
#define __UNALIGNED_UINT16_WRITE(PTR,VAL) __iar_uint16_write(PTR,VAL)
#endif
#ifndef __UNALIGNED_UINT32_READ
#pragma language=save
#pragma language=extended
__IAR_FT uint32_t __iar_uint32_read(void const *ptr)
{
return *(__packed uint32_t*)(ptr);
}
#pragma language=restore
#define __UNALIGNED_UINT32_READ(PTR) __iar_uint32_read(PTR)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#pragma language=save
#pragma language=extended
__IAR_FT void __iar_uint32_write(void const *ptr, uint32_t val)
{
*(__packed uint32_t*)(ptr) = val;;
}
#pragma language=restore
#define __UNALIGNED_UINT32_WRITE(PTR,VAL) __iar_uint32_write(PTR,VAL)
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
#pragma language=save
#pragma language=extended
__packed struct __iar_u32 { uint32_t v; };
#pragma language=restore
#define __UNALIGNED_UINT32(PTR) (((struct __iar_u32 *)(PTR))->v)
#endif
#ifndef __USED
#if __ICCARM_V8
#define __USED __attribute__((used))
#else
#define __USED _Pragma("__root")
#endif
#endif
#ifndef __WEAK
#if __ICCARM_V8
#define __WEAK __attribute__((weak))
#else
#define __WEAK _Pragma("__weak")
#endif
#endif
#ifndef __ICCARM_INTRINSICS_VERSION__
#define __ICCARM_INTRINSICS_VERSION__ 0
#endif
#if __ICCARM_INTRINSICS_VERSION__ == 2
#if defined(__CLZ)
#undef __CLZ
#endif
#if defined(__REVSH)
#undef __REVSH
#endif
#if defined(__RBIT)
#undef __RBIT
#endif
#if defined(__SSAT)
#undef __SSAT
#endif
#if defined(__USAT)
#undef __USAT
#endif
#include "iccarm_builtin.h"
#define __disable_fault_irq __iar_builtin_disable_fiq
#define __disable_irq __iar_builtin_disable_interrupt
#define __enable_fault_irq __iar_builtin_enable_fiq
#define __enable_irq __iar_builtin_enable_interrupt
#define __arm_rsr __iar_builtin_rsr
#define __arm_wsr __iar_builtin_wsr
#define __get_APSR() (__arm_rsr("APSR"))
#define __get_BASEPRI() (__arm_rsr("BASEPRI"))
#define __get_CONTROL() (__arm_rsr("CONTROL"))
#define __get_FAULTMASK() (__arm_rsr("FAULTMASK"))
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
#define __get_FPSCR() (__arm_rsr("FPSCR"))
#define __set_FPSCR(VALUE) (__arm_wsr("FPSCR", (VALUE)))
#else
#define __get_FPSCR() ( 0 )
#define __set_FPSCR(VALUE) ((void)VALUE)
#endif
#define __get_IPSR() (__arm_rsr("IPSR"))
#define __get_MSP() (__arm_rsr("MSP"))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
#define __get_MSPLIM() (0U)
#else
#define __get_MSPLIM() (__arm_rsr("MSPLIM"))
#endif
#define __get_PRIMASK() (__arm_rsr("PRIMASK"))
#define __get_PSP() (__arm_rsr("PSP"))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
#define __get_PSPLIM() (0U)
#else
#define __get_PSPLIM() (__arm_rsr("PSPLIM"))
#endif
#define __get_xPSR() (__arm_rsr("xPSR"))
#define __set_BASEPRI(VALUE) (__arm_wsr("BASEPRI", (VALUE)))
#define __set_BASEPRI_MAX(VALUE) (__arm_wsr("BASEPRI_MAX", (VALUE)))
#define __set_CONTROL(VALUE) (__arm_wsr("CONTROL", (VALUE)))
#define __set_FAULTMASK(VALUE) (__arm_wsr("FAULTMASK", (VALUE)))
#define __set_MSP(VALUE) (__arm_wsr("MSP", (VALUE)))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
#define __set_MSPLIM(VALUE) ((void)(VALUE))
#else
#define __set_MSPLIM(VALUE) (__arm_wsr("MSPLIM", (VALUE)))
#endif
#define __set_PRIMASK(VALUE) (__arm_wsr("PRIMASK", (VALUE)))
#define __set_PSP(VALUE) (__arm_wsr("PSP", (VALUE)))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
#define __set_PSPLIM(VALUE) ((void)(VALUE))
#else
#define __set_PSPLIM(VALUE) (__arm_wsr("PSPLIM", (VALUE)))
#endif
#define __TZ_get_CONTROL_NS() (__arm_rsr("CONTROL_NS"))
#define __TZ_set_CONTROL_NS(VALUE) (__arm_wsr("CONTROL_NS", (VALUE)))
#define __TZ_get_PSP_NS() (__arm_rsr("PSP_NS"))
#define __TZ_set_PSP_NS(VALUE) (__arm_wsr("PSP_NS", (VALUE)))
#define __TZ_get_MSP_NS() (__arm_rsr("MSP_NS"))
#define __TZ_set_MSP_NS(VALUE) (__arm_wsr("MSP_NS", (VALUE)))
#define __TZ_get_SP_NS() (__arm_rsr("SP_NS"))
#define __TZ_set_SP_NS(VALUE) (__arm_wsr("SP_NS", (VALUE)))
#define __TZ_get_PRIMASK_NS() (__arm_rsr("PRIMASK_NS"))
#define __TZ_set_PRIMASK_NS(VALUE) (__arm_wsr("PRIMASK_NS", (VALUE)))
#define __TZ_get_BASEPRI_NS() (__arm_rsr("BASEPRI_NS"))
#define __TZ_set_BASEPRI_NS(VALUE) (__arm_wsr("BASEPRI_NS", (VALUE)))
#define __TZ_get_FAULTMASK_NS() (__arm_rsr("FAULTMASK_NS"))
#define __TZ_set_FAULTMASK_NS(VALUE)(__arm_wsr("FAULTMASK_NS", (VALUE)))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
#define __TZ_get_PSPLIM_NS() (0U)
#define __TZ_set_PSPLIM_NS(VALUE) ((void)(VALUE))
#else
#define __TZ_get_PSPLIM_NS() (__arm_rsr("PSPLIM_NS"))
#define __TZ_set_PSPLIM_NS(VALUE) (__arm_wsr("PSPLIM_NS", (VALUE)))
#endif
#define __TZ_get_MSPLIM_NS() (__arm_rsr("MSPLIM_NS"))
#define __TZ_set_MSPLIM_NS(VALUE) (__arm_wsr("MSPLIM_NS", (VALUE)))
#define __NOP __iar_builtin_no_operation
#define __CLZ __iar_builtin_CLZ
#define __CLREX __iar_builtin_CLREX
#define __DMB __iar_builtin_DMB
#define __DSB __iar_builtin_DSB
#define __ISB __iar_builtin_ISB
#define __LDREXB __iar_builtin_LDREXB
#define __LDREXH __iar_builtin_LDREXH
#define __LDREXW __iar_builtin_LDREX
#define __RBIT __iar_builtin_RBIT
#define __REV __iar_builtin_REV
#define __REV16 __iar_builtin_REV16
__IAR_FT int16_t __REVSH(int16_t val)
{
return (int16_t) __iar_builtin_REVSH(val);
}
#define __ROR __iar_builtin_ROR
#define __RRX __iar_builtin_RRX
#define __SEV __iar_builtin_SEV
#if !__IAR_M0_FAMILY
#define __SSAT __iar_builtin_SSAT
#endif
#define __STREXB __iar_builtin_STREXB
#define __STREXH __iar_builtin_STREXH
#define __STREXW __iar_builtin_STREX
#if !__IAR_M0_FAMILY
#define __USAT __iar_builtin_USAT
#endif
#define __WFE __iar_builtin_WFE
#define __WFI __iar_builtin_WFI
#if __ARM_MEDIA__
#define __SADD8 __iar_builtin_SADD8
#define __QADD8 __iar_builtin_QADD8
#define __SHADD8 __iar_builtin_SHADD8
#define __UADD8 __iar_builtin_UADD8
#define __UQADD8 __iar_builtin_UQADD8
#define __UHADD8 __iar_builtin_UHADD8
#define __SSUB8 __iar_builtin_SSUB8
#define __QSUB8 __iar_builtin_QSUB8
#define __SHSUB8 __iar_builtin_SHSUB8
#define __USUB8 __iar_builtin_USUB8
#define __UQSUB8 __iar_builtin_UQSUB8
#define __UHSUB8 __iar_builtin_UHSUB8
#define __SADD16 __iar_builtin_SADD16
#define __QADD16 __iar_builtin_QADD16
#define __SHADD16 __iar_builtin_SHADD16
#define __UADD16 __iar_builtin_UADD16
#define __UQADD16 __iar_builtin_UQADD16
#define __UHADD16 __iar_builtin_UHADD16
#define __SSUB16 __iar_builtin_SSUB16
#define __QSUB16 __iar_builtin_QSUB16
#define __SHSUB16 __iar_builtin_SHSUB16
#define __USUB16 __iar_builtin_USUB16
#define __UQSUB16 __iar_builtin_UQSUB16
#define __UHSUB16 __iar_builtin_UHSUB16
#define __SASX __iar_builtin_SASX
#define __QASX __iar_builtin_QASX
#define __SHASX __iar_builtin_SHASX
#define __UASX __iar_builtin_UASX
#define __UQASX __iar_builtin_UQASX
#define __UHASX __iar_builtin_UHASX
#define __SSAX __iar_builtin_SSAX
#define __QSAX __iar_builtin_QSAX
#define __SHSAX __iar_builtin_SHSAX
#define __USAX __iar_builtin_USAX
#define __UQSAX __iar_builtin_UQSAX
#define __UHSAX __iar_builtin_UHSAX
#define __USAD8 __iar_builtin_USAD8
#define __USADA8 __iar_builtin_USADA8
#define __SSAT16 __iar_builtin_SSAT16
#define __USAT16 __iar_builtin_USAT16
#define __UXTB16 __iar_builtin_UXTB16
#define __UXTAB16 __iar_builtin_UXTAB16
#define __SXTB16 __iar_builtin_SXTB16
#define __SXTAB16 __iar_builtin_SXTAB16
#define __SMUAD __iar_builtin_SMUAD
#define __SMUADX __iar_builtin_SMUADX
#define __SMMLA __iar_builtin_SMMLA
#define __SMLAD __iar_builtin_SMLAD
#define __SMLADX __iar_builtin_SMLADX
#define __SMLALD __iar_builtin_SMLALD
#define __SMLALDX __iar_builtin_SMLALDX
#define __SMUSD __iar_builtin_SMUSD
#define __SMUSDX __iar_builtin_SMUSDX
#define __SMLSD __iar_builtin_SMLSD
#define __SMLSDX __iar_builtin_SMLSDX
#define __SMLSLD __iar_builtin_SMLSLD
#define __SMLSLDX __iar_builtin_SMLSLDX
#define __SEL __iar_builtin_SEL
#define __QADD __iar_builtin_QADD
#define __QSUB __iar_builtin_QSUB
#define __PKHBT __iar_builtin_PKHBT
#define __PKHTB __iar_builtin_PKHTB
#endif
#else /* __ICCARM_INTRINSICS_VERSION__ == 2 */
#if __IAR_M0_FAMILY
/* Avoid clash between intrinsics.h and arm_math.h when compiling for Cortex-M0. */
#define __CLZ __cmsis_iar_clz_not_active
#define __SSAT __cmsis_iar_ssat_not_active
#define __USAT __cmsis_iar_usat_not_active
#define __RBIT __cmsis_iar_rbit_not_active
#define __get_APSR __cmsis_iar_get_APSR_not_active
#endif
#if (!((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) ))
#define __get_FPSCR __cmsis_iar_get_FPSR_not_active
#define __set_FPSCR __cmsis_iar_set_FPSR_not_active
#endif
#ifdef __INTRINSICS_INCLUDED
#error intrinsics.h is already included previously!
#endif
#include <intrinsics.h>
#if __IAR_M0_FAMILY
/* Avoid clash between intrinsics.h and arm_math.h when compiling for Cortex-M0. */
#undef __CLZ
#undef __SSAT
#undef __USAT
#undef __RBIT
#undef __get_APSR
__STATIC_INLINE uint8_t __CLZ(uint32_t data)
{
if (data == 0U) { return 32U; }
uint32_t count = 0U;
uint32_t mask = 0x80000000U;
while ((data & mask) == 0U)
{
count += 1U;
mask = mask >> 1U;
}
return count;
}
__STATIC_INLINE uint32_t __RBIT(uint32_t v)
{
uint8_t sc = 31U;
uint32_t r = v;
for (v >>= 1U; v; v >>= 1U)
{
r <<= 1U;
r |= v & 1U;
sc--;
}
return (r << sc);
}
__STATIC_INLINE uint32_t __get_APSR(void)
{
uint32_t res;
__asm("MRS %0,APSR" : "=r" (res));
return res;
}
#endif
#if (!((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) ))
#undef __get_FPSCR
#undef __set_FPSCR
#define __get_FPSCR() (0)
#define __set_FPSCR(VALUE) ((void)VALUE)
#endif
#pragma diag_suppress=Pe940
#pragma diag_suppress=Pe177
#define __enable_irq __enable_interrupt
#define __disable_irq __disable_interrupt
#define __NOP __no_operation
#define __get_xPSR __get_PSR
#if (!defined(__ARM_ARCH_6M__) || __ARM_ARCH_6M__==0)
__IAR_FT uint32_t __LDREXW(uint32_t volatile *ptr)
{
return __LDREX((unsigned long *)ptr);
}
__IAR_FT uint32_t __STREXW(uint32_t value, uint32_t volatile *ptr)
{
return __STREX(value, (unsigned long *)ptr);
}
#endif
/* __CORTEX_M is defined in core_cm0.h, core_cm3.h and core_cm4.h. */
#if (__CORTEX_M >= 0x03)
__IAR_FT uint32_t __RRX(uint32_t value)
{
uint32_t result;
__ASM("RRX %0, %1" : "=r"(result) : "r" (value) : "cc");
return(result);
}
__IAR_FT void __set_BASEPRI_MAX(uint32_t value)
{
__asm volatile("MSR BASEPRI_MAX,%0"::"r" (value));
}
#define __enable_fault_irq __enable_fiq
#define __disable_fault_irq __disable_fiq
#endif /* (__CORTEX_M >= 0x03) */
__IAR_FT uint32_t __ROR(uint32_t op1, uint32_t op2)
{
return (op1 >> op2) | (op1 << ((sizeof(op1)*8)-op2));
}
#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
__IAR_FT uint32_t __get_MSPLIM(void)
{
uint32_t res;
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
res = 0U;
#else
__asm volatile("MRS %0,MSPLIM" : "=r" (res));
#endif
return res;
}
__IAR_FT void __set_MSPLIM(uint32_t value)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
(void)value;
#else
__asm volatile("MSR MSPLIM,%0" :: "r" (value));
#endif
}
__IAR_FT uint32_t __get_PSPLIM(void)
{
uint32_t res;
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
res = 0U;
#else
__asm volatile("MRS %0,PSPLIM" : "=r" (res));
#endif
return res;
}
__IAR_FT void __set_PSPLIM(uint32_t value)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
(void)value;
#else
__asm volatile("MSR PSPLIM,%0" :: "r" (value));
#endif
}
__IAR_FT uint32_t __TZ_get_CONTROL_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,CONTROL_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_CONTROL_NS(uint32_t value)
{
__asm volatile("MSR CONTROL_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_PSP_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,PSP_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_PSP_NS(uint32_t value)
{
__asm volatile("MSR PSP_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_MSP_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,MSP_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_MSP_NS(uint32_t value)
{
__asm volatile("MSR MSP_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_SP_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,SP_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_SP_NS(uint32_t value)
{
__asm volatile("MSR SP_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_PRIMASK_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,PRIMASK_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_PRIMASK_NS(uint32_t value)
{
__asm volatile("MSR PRIMASK_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_BASEPRI_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,BASEPRI_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_BASEPRI_NS(uint32_t value)
{
__asm volatile("MSR BASEPRI_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_FAULTMASK_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,FAULTMASK_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_FAULTMASK_NS(uint32_t value)
{
__asm volatile("MSR FAULTMASK_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_PSPLIM_NS(void)
{
uint32_t res;
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
res = 0U;
#else
__asm volatile("MRS %0,PSPLIM_NS" : "=r" (res));
#endif
return res;
}
__IAR_FT void __TZ_set_PSPLIM_NS(uint32_t value)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
(void)value;
#else
__asm volatile("MSR PSPLIM_NS,%0" :: "r" (value));
#endif
}
__IAR_FT uint32_t __TZ_get_MSPLIM_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,MSPLIM_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_MSPLIM_NS(uint32_t value)
{
__asm volatile("MSR MSPLIM_NS,%0" :: "r" (value));
}
#endif /* __ARM_ARCH_8M_MAIN__ or __ARM_ARCH_8M_BASE__ */
#endif /* __ICCARM_INTRINSICS_VERSION__ == 2 */
#define __BKPT(value) __asm volatile ("BKPT %0" : : "i"(value))
#if __IAR_M0_FAMILY
__STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat)
{
if ((sat >= 1U) && (sat <= 32U))
{
const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
const int32_t min = -1 - max ;
if (val > max)
{
return max;
}
else if (val < min)
{
return min;
}
}
return val;
}
__STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat)
{
if (sat <= 31U)
{
const uint32_t max = ((1U << sat) - 1U);
if (val > (int32_t)max)
{
return max;
}
else if (val < 0)
{
return 0U;
}
}
return (uint32_t)val;
}
#endif
#if (__CORTEX_M >= 0x03) /* __CORTEX_M is defined in core_cm0.h, core_cm3.h and core_cm4.h. */
__IAR_FT uint8_t __LDRBT(volatile uint8_t *addr)
{
uint32_t res;
__ASM("LDRBT %0, [%1]" : "=r" (res) : "r" (addr) : "memory");
return ((uint8_t)res);
}
__IAR_FT uint16_t __LDRHT(volatile uint16_t *addr)
{
uint32_t res;
__ASM("LDRHT %0, [%1]" : "=r" (res) : "r" (addr) : "memory");
return ((uint16_t)res);
}
__IAR_FT uint32_t __LDRT(volatile uint32_t *addr)
{
uint32_t res;
__ASM("LDRT %0, [%1]" : "=r" (res) : "r" (addr) : "memory");
return res;
}
__IAR_FT void __STRBT(uint8_t value, volatile uint8_t *addr)
{
__ASM("STRBT %1, [%0]" : : "r" (addr), "r" ((uint32_t)value) : "memory");
}
__IAR_FT void __STRHT(uint16_t value, volatile uint16_t *addr)
{
__ASM("STRHT %1, [%0]" : : "r" (addr), "r" ((uint32_t)value) : "memory");
}
__IAR_FT void __STRT(uint32_t value, volatile uint32_t *addr)
{
__ASM("STRT %1, [%0]" : : "r" (addr), "r" (value) : "memory");
}
#endif /* (__CORTEX_M >= 0x03) */
#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
__IAR_FT uint8_t __LDAB(volatile uint8_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAB %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint8_t)res);
}
__IAR_FT uint16_t __LDAH(volatile uint16_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAH %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint16_t)res);
}
__IAR_FT uint32_t __LDA(volatile uint32_t *ptr)
{
uint32_t res;
__ASM volatile ("LDA %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return res;
}
__IAR_FT void __STLB(uint8_t value, volatile uint8_t *ptr)
{
__ASM volatile ("STLB %1, [%0]" :: "r" (ptr), "r" (value) : "memory");
}
__IAR_FT void __STLH(uint16_t value, volatile uint16_t *ptr)
{
__ASM volatile ("STLH %1, [%0]" :: "r" (ptr), "r" (value) : "memory");
}
__IAR_FT void __STL(uint32_t value, volatile uint32_t *ptr)
{
__ASM volatile ("STL %1, [%0]" :: "r" (ptr), "r" (value) : "memory");
}
__IAR_FT uint8_t __LDAEXB(volatile uint8_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAEXB %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint8_t)res);
}
__IAR_FT uint16_t __LDAEXH(volatile uint16_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAEXH %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint16_t)res);
}
__IAR_FT uint32_t __LDAEX(volatile uint32_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAEX %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return res;
}
__IAR_FT uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
{
uint32_t res;
__ASM volatile ("STLEXB %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory");
return res;
}
__IAR_FT uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
{
uint32_t res;
__ASM volatile ("STLEXH %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory");
return res;
}
__IAR_FT uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
{
uint32_t res;
__ASM volatile ("STLEX %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory");
return res;
}
#endif /* __ARM_ARCH_8M_MAIN__ or __ARM_ARCH_8M_BASE__ */
#undef __IAR_FT
#undef __IAR_M0_FAMILY
#undef __ICCARM_V8
#pragma diag_default=Pe940
#pragma diag_default=Pe177
#endif /* __CMSIS_ICCARM_H__ */

View File

@ -0,0 +1,39 @@
/**************************************************************************//**
* @file cmsis_version.h
* @brief CMSIS Core(M) Version definitions
* @version V5.0.2
* @date 19. April 2017
******************************************************************************/
/*
* Copyright (c) 2009-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CMSIS_VERSION_H
#define __CMSIS_VERSION_H
/* CMSIS Version definitions */
#define __CM_CMSIS_VERSION_MAIN ( 5U) /*!< [31:16] CMSIS Core(M) main version */
#define __CM_CMSIS_VERSION_SUB ( 1U) /*!< [15:0] CMSIS Core(M) sub version */
#define __CM_CMSIS_VERSION ((__CM_CMSIS_VERSION_MAIN << 16U) | \
__CM_CMSIS_VERSION_SUB ) /*!< CMSIS Core(M) version number */
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,949 @@
/**************************************************************************//**
* @file core_cm0.h
* @brief CMSIS Cortex-M0 Core Peripheral Access Layer Header File
* @version V5.0.5
* @date 28. May 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CORE_CM0_H_GENERIC
#define __CORE_CM0_H_GENERIC
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
\page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/**
\ingroup Cortex_M0
@{
*/
#include "cmsis_version.h"
/* CMSIS CM0 definitions */
#define __CM0_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
#define __CM0_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
#define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN << 16U) | \
__CM0_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
#define __CORTEX_M (0U) /*!< Cortex-M Core */
/** __FPU_USED indicates whether an FPU is used or not.
This core does not support an FPU at all
*/
#define __FPU_USED 0U
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#if defined __ARM_PCS_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TI_ARM__ )
#if defined __TI_VFP_SUPPORT__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __CSMC__ )
#if ( __CSMC__ & 0x400U)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM0_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CM0_H_DEPENDANT
#define __CORE_CM0_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CM0_REV
#define __CM0_REV 0x0000U
#warning "__CM0_REV not defined in device header file; using default!"
#endif
#ifndef __NVIC_PRIO_BITS
#define __NVIC_PRIO_BITS 2U
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 0U
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*! Defines 'read only' structure member permissions */
#define __OM volatile /*! Defines 'write only' structure member permissions */
#define __IOM volatile /*! Defines 'read / write' structure member permissions */
/*@} end of group Cortex_M0 */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- Core Register
- Core NVIC Register
- Core SCB Register
- Core SysTick Register
******************************************************************************/
/**
\defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-M processor based devices.
*/
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/**
\brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/* APSR Register Definitions */
#define APSR_N_Pos 31U /*!< APSR: N Position */
#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
#define APSR_Z_Pos 30U /*!< APSR: Z Position */
#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
#define APSR_C_Pos 29U /*!< APSR: C Position */
#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
#define APSR_V_Pos 28U /*!< APSR: V Position */
#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
/**
\brief Union type to access the Interrupt Program Status Register (IPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} IPSR_Type;
/* IPSR Register Definitions */
#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
/**
\brief Union type to access the Special-Purpose Program Status Registers (xPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} xPSR_Type;
/* xPSR Register Definitions */
#define xPSR_N_Pos 31U /*!< xPSR: N Position */
#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
#define xPSR_C_Pos 29U /*!< xPSR: C Position */
#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
#define xPSR_V_Pos 28U /*!< xPSR: V Position */
#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
#define xPSR_T_Pos 24U /*!< xPSR: T Position */
#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
/**
\brief Union type to access the Control Registers (CONTROL).
*/
typedef union
{
struct
{
uint32_t _reserved0:1; /*!< bit: 0 Reserved */
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} CONTROL_Type;
/* CONTROL Register Definitions */
#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
/*@} end of group CMSIS_CORE */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
\brief Type definitions for the NVIC Registers
@{
*/
/**
\brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
*/
typedef struct
{
__IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
uint32_t RESERVED0[31U];
__IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
uint32_t RSERVED1[31U];
__IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
uint32_t RESERVED2[31U];
__IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31U];
uint32_t RESERVED4[64U];
__IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/*@} end of group CMSIS_NVIC */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCB System Control Block (SCB)
\brief Type definitions for the System Control Block Registers
@{
*/
/**
\brief Structure type to access the System Control Block (SCB).
*/
typedef struct
{
__IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
__IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
uint32_t RESERVED0;
__IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
__IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
__IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
uint32_t RESERVED1;
__IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
__IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
} SCB_Type;
/* SCB CPUID Register Definitions */
#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
/* SCB Interrupt Control State Register Definitions */
#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
/* SCB Application Interrupt and Reset Control Register Definitions */
#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
/* SCB System Control Register Definitions */
#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
/* SCB Configuration Control Register Definitions */
#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
/* SCB System Handler Control and State Register Definitions */
#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
/*@} end of group CMSIS_SCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
\brief Type definitions for the System Timer Registers.
@{
*/
/**
\brief Structure type to access the System Timer (SysTick).
*/
typedef struct
{
__IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
__IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
__IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
__IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
} SysTick_Type;
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
/*@} end of group CMSIS_SysTick */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
\brief Cortex-M0 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
Therefore they are not covered by the Cortex-M0 header file.
@{
*/
/*@} end of group CMSIS_CoreDebug */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_bitfield Core register bit field macros
\brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
@{
*/
/**
\brief Mask and shift a bit field value for use in a register bit range.
\param[in] field Name of the register bit field.
\param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
\return Masked and shifted value.
*/
#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
/**
\brief Mask and shift a register value to extract a bit filed value.
\param[in] field Name of the register bit field.
\param[in] value Value of register. This parameter is interpreted as an uint32_t type.
\return Masked and shifted bit field value.
*/
#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
/*@} end of group CMSIS_core_bitfield */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_base Core Definitions
\brief Definitions for base addresses, unions, and structures.
@{
*/
/* Memory mapping of Core Hardware */
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
/*@} */
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- Core NVIC Functions
- Core SysTick Functions
- Core Register Access Functions
******************************************************************************/
/**
\defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
*/
/* ########################## NVIC functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
\brief Functions that manage interrupts and exceptions via the NVIC.
@{
*/
#ifdef CMSIS_NVIC_VIRTUAL
#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
#endif
#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
#define NVIC_EnableIRQ __NVIC_EnableIRQ
#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
#define NVIC_DisableIRQ __NVIC_DisableIRQ
#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M0 */
#define NVIC_SetPriority __NVIC_SetPriority
#define NVIC_GetPriority __NVIC_GetPriority
#define NVIC_SystemReset __NVIC_SystemReset
#endif /* CMSIS_NVIC_VIRTUAL */
#ifdef CMSIS_VECTAB_VIRTUAL
#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
#endif
#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetVector __NVIC_SetVector
#define NVIC_GetVector __NVIC_GetVector
#endif /* (CMSIS_VECTAB_VIRTUAL) */
#define NVIC_USER_IRQ_OFFSET 16
/* The following EXC_RETURN values are saved the LR on exception entry */
#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
/* Interrupt Priorities are WORD accessible only under Armv6-M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
#define __NVIC_SetPriorityGrouping(X) (void)(X)
#define __NVIC_GetPriorityGrouping() (0U)
/**
\brief Enable Interrupt
\details Enables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Get Interrupt Enable status
\details Returns a device specific interrupt enable status from the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt is not enabled.
\return 1 Interrupt is enabled.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Disable Interrupt
\details Disables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__DSB();
__ISB();
}
}
/**
\brief Get Pending Interrupt
\details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt status is not pending.
\return 1 Interrupt status is pending.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Set Pending Interrupt
\details Sets the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Clear Pending Interrupt
\details Clears the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Set Interrupt Priority
\details Sets the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\param [in] priority Priority to set.
\note The priority cannot be set for every processor exception.
*/
__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
else
{
SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
}
/**
\brief Get Interrupt Priority
\details Reads the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Interrupt Priority.
Value is aligned automatically to the implemented priority bits of the microcontroller.
*/
__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
else
{
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
}
/**
\brief Encode Priority
\details Encodes the priority for an interrupt with the given priority group,
preemptive priority value, and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
\param [in] PriorityGroup Used priority group.
\param [in] PreemptPriority Preemptive priority value (starting from 0).
\param [in] SubPriority Subpriority value (starting from 0).
\return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
*/
__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
return (
((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
);
}
/**
\brief Decode Priority
\details Decodes an interrupt priority value with a given priority group to
preemptive priority value and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
\param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
\param [in] PriorityGroup Used priority group.
\param [out] pPreemptPriority Preemptive priority value (starting from 0).
\param [out] pSubPriority Subpriority value (starting from 0).
*/
__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
*pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
*pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
}
/**
\brief Set Interrupt Vector
\details Sets an interrupt vector in SRAM based interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
Address 0 must be mapped to SRAM.
\param [in] IRQn Interrupt number
\param [in] vector Address of interrupt handler function
*/
__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
{
uint32_t *vectors = (uint32_t *)0x0U;
vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector;
}
/**
\brief Get Interrupt Vector
\details Reads an interrupt vector from interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Address of interrupt handler function
*/
__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
{
uint32_t *vectors = (uint32_t *)0x0U;
return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET];
}
/**
\brief System Reset
\details Initiates a system reset request to reset the MCU.
*/
__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
SCB_AIRCR_SYSRESETREQ_Msk);
__DSB(); /* Ensure completion of memory access */
for(;;) /* wait until reset */
{
__NOP();
}
}
/*@} end of CMSIS_Core_NVICFunctions */
/* ########################## FPU functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_FpuFunctions FPU Functions
\brief Function that provides FPU type.
@{
*/
/**
\brief get FPU type
\details returns the FPU type
\returns
- \b 0: No FPU
- \b 1: Single precision FPU
- \b 2: Double + Single precision FPU
*/
__STATIC_INLINE uint32_t SCB_GetFPUType(void)
{
return 0U; /* No FPU */
}
/*@} end of CMSIS_Core_FpuFunctions */
/* ################################## SysTick function ############################################ */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
\brief Functions that configure the System.
@{
*/
#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
/**
\brief System Tick Configuration
\details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
{
return (1UL); /* Reload value impossible */
}
SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0UL); /* Function successful */
}
#endif
/*@} end of CMSIS_Core_SysTickFunctions */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM0_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,976 @@
/**************************************************************************//**
* @file core_cm1.h
* @brief CMSIS Cortex-M1 Core Peripheral Access Layer Header File
* @version V1.0.0
* @date 23. July 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CORE_CM1_H_GENERIC
#define __CORE_CM1_H_GENERIC
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
\page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/**
\ingroup Cortex_M1
@{
*/
#include "cmsis_version.h"
/* CMSIS CM1 definitions */
#define __CM1_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
#define __CM1_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
#define __CM1_CMSIS_VERSION ((__CM1_CMSIS_VERSION_MAIN << 16U) | \
__CM1_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
#define __CORTEX_M (1U) /*!< Cortex-M Core */
/** __FPU_USED indicates whether an FPU is used or not.
This core does not support an FPU at all
*/
#define __FPU_USED 0U
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#if defined __ARM_PCS_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TI_ARM__ )
#if defined __TI_VFP_SUPPORT__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __CSMC__ )
#if ( __CSMC__ & 0x400U)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM1_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CM1_H_DEPENDANT
#define __CORE_CM1_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CM1_REV
#define __CM1_REV 0x0100U
#warning "__CM1_REV not defined in device header file; using default!"
#endif
#ifndef __NVIC_PRIO_BITS
#define __NVIC_PRIO_BITS 2U
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 0U
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*! Defines 'read only' structure member permissions */
#define __OM volatile /*! Defines 'write only' structure member permissions */
#define __IOM volatile /*! Defines 'read / write' structure member permissions */
/*@} end of group Cortex_M1 */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- Core Register
- Core NVIC Register
- Core SCB Register
- Core SysTick Register
******************************************************************************/
/**
\defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-M processor based devices.
*/
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/**
\brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/* APSR Register Definitions */
#define APSR_N_Pos 31U /*!< APSR: N Position */
#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
#define APSR_Z_Pos 30U /*!< APSR: Z Position */
#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
#define APSR_C_Pos 29U /*!< APSR: C Position */
#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
#define APSR_V_Pos 28U /*!< APSR: V Position */
#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
/**
\brief Union type to access the Interrupt Program Status Register (IPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} IPSR_Type;
/* IPSR Register Definitions */
#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
/**
\brief Union type to access the Special-Purpose Program Status Registers (xPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} xPSR_Type;
/* xPSR Register Definitions */
#define xPSR_N_Pos 31U /*!< xPSR: N Position */
#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
#define xPSR_C_Pos 29U /*!< xPSR: C Position */
#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
#define xPSR_V_Pos 28U /*!< xPSR: V Position */
#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
#define xPSR_T_Pos 24U /*!< xPSR: T Position */
#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
/**
\brief Union type to access the Control Registers (CONTROL).
*/
typedef union
{
struct
{
uint32_t _reserved0:1; /*!< bit: 0 Reserved */
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} CONTROL_Type;
/* CONTROL Register Definitions */
#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
/*@} end of group CMSIS_CORE */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
\brief Type definitions for the NVIC Registers
@{
*/
/**
\brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
*/
typedef struct
{
__IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
uint32_t RESERVED0[31U];
__IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
uint32_t RSERVED1[31U];
__IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
uint32_t RESERVED2[31U];
__IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31U];
uint32_t RESERVED4[64U];
__IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/*@} end of group CMSIS_NVIC */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCB System Control Block (SCB)
\brief Type definitions for the System Control Block Registers
@{
*/
/**
\brief Structure type to access the System Control Block (SCB).
*/
typedef struct
{
__IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
__IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
uint32_t RESERVED0;
__IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
__IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
__IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
uint32_t RESERVED1;
__IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
__IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
} SCB_Type;
/* SCB CPUID Register Definitions */
#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
/* SCB Interrupt Control State Register Definitions */
#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
/* SCB Application Interrupt and Reset Control Register Definitions */
#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
/* SCB System Control Register Definitions */
#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
/* SCB Configuration Control Register Definitions */
#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
/* SCB System Handler Control and State Register Definitions */
#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
/*@} end of group CMSIS_SCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB)
\brief Type definitions for the System Control and ID Register not in the SCB
@{
*/
/**
\brief Structure type to access the System Control and ID Register not in the SCB.
*/
typedef struct
{
uint32_t RESERVED0[2U];
__IOM uint32_t ACTLR; /*!< Offset: 0x008 (R/W) Auxiliary Control Register */
} SCnSCB_Type;
/* Auxiliary Control Register Definitions */
#define SCnSCB_ACTLR_ITCMUAEN_Pos 4U /*!< ACTLR: Instruction TCM Upper Alias Enable Position */
#define SCnSCB_ACTLR_ITCMUAEN_Msk (1UL << SCnSCB_ACTLR_ITCMUAEN_Pos) /*!< ACTLR: Instruction TCM Upper Alias Enable Mask */
#define SCnSCB_ACTLR_ITCMLAEN_Pos 3U /*!< ACTLR: Instruction TCM Lower Alias Enable Position */
#define SCnSCB_ACTLR_ITCMLAEN_Msk (1UL << SCnSCB_ACTLR_ITCMLAEN_Pos) /*!< ACTLR: Instruction TCM Lower Alias Enable Mask */
/*@} end of group CMSIS_SCnotSCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
\brief Type definitions for the System Timer Registers.
@{
*/
/**
\brief Structure type to access the System Timer (SysTick).
*/
typedef struct
{
__IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
__IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
__IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
__IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
} SysTick_Type;
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
/*@} end of group CMSIS_SysTick */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
\brief Cortex-M1 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
Therefore they are not covered by the Cortex-M1 header file.
@{
*/
/*@} end of group CMSIS_CoreDebug */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_bitfield Core register bit field macros
\brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
@{
*/
/**
\brief Mask and shift a bit field value for use in a register bit range.
\param[in] field Name of the register bit field.
\param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
\return Masked and shifted value.
*/
#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
/**
\brief Mask and shift a register value to extract a bit filed value.
\param[in] field Name of the register bit field.
\param[in] value Value of register. This parameter is interpreted as an uint32_t type.
\return Masked and shifted bit field value.
*/
#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
/*@} end of group CMSIS_core_bitfield */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_base Core Definitions
\brief Definitions for base addresses, unions, and structures.
@{
*/
/* Memory mapping of Core Hardware */
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
#define SCnSCB ((SCnSCB_Type *) SCS_BASE ) /*!< System control Register not in SCB */
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
/*@} */
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- Core NVIC Functions
- Core SysTick Functions
- Core Register Access Functions
******************************************************************************/
/**
\defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
*/
/* ########################## NVIC functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
\brief Functions that manage interrupts and exceptions via the NVIC.
@{
*/
#ifdef CMSIS_NVIC_VIRTUAL
#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
#endif
#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
#define NVIC_EnableIRQ __NVIC_EnableIRQ
#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
#define NVIC_DisableIRQ __NVIC_DisableIRQ
#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M1 */
#define NVIC_SetPriority __NVIC_SetPriority
#define NVIC_GetPriority __NVIC_GetPriority
#define NVIC_SystemReset __NVIC_SystemReset
#endif /* CMSIS_NVIC_VIRTUAL */
#ifdef CMSIS_VECTAB_VIRTUAL
#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
#endif
#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetVector __NVIC_SetVector
#define NVIC_GetVector __NVIC_GetVector
#endif /* (CMSIS_VECTAB_VIRTUAL) */
#define NVIC_USER_IRQ_OFFSET 16
/* The following EXC_RETURN values are saved the LR on exception entry */
#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
/* Interrupt Priorities are WORD accessible only under Armv6-M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
#define __NVIC_SetPriorityGrouping(X) (void)(X)
#define __NVIC_GetPriorityGrouping() (0U)
/**
\brief Enable Interrupt
\details Enables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Get Interrupt Enable status
\details Returns a device specific interrupt enable status from the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt is not enabled.
\return 1 Interrupt is enabled.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Disable Interrupt
\details Disables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__DSB();
__ISB();
}
}
/**
\brief Get Pending Interrupt
\details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt status is not pending.
\return 1 Interrupt status is pending.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Set Pending Interrupt
\details Sets the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Clear Pending Interrupt
\details Clears the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Set Interrupt Priority
\details Sets the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\param [in] priority Priority to set.
\note The priority cannot be set for every processor exception.
*/
__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
else
{
SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
}
/**
\brief Get Interrupt Priority
\details Reads the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Interrupt Priority.
Value is aligned automatically to the implemented priority bits of the microcontroller.
*/
__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
else
{
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
}
/**
\brief Encode Priority
\details Encodes the priority for an interrupt with the given priority group,
preemptive priority value, and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
\param [in] PriorityGroup Used priority group.
\param [in] PreemptPriority Preemptive priority value (starting from 0).
\param [in] SubPriority Subpriority value (starting from 0).
\return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
*/
__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
return (
((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
);
}
/**
\brief Decode Priority
\details Decodes an interrupt priority value with a given priority group to
preemptive priority value and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
\param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
\param [in] PriorityGroup Used priority group.
\param [out] pPreemptPriority Preemptive priority value (starting from 0).
\param [out] pSubPriority Subpriority value (starting from 0).
*/
__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
*pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
*pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
}
/**
\brief Set Interrupt Vector
\details Sets an interrupt vector in SRAM based interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
Address 0 must be mapped to SRAM.
\param [in] IRQn Interrupt number
\param [in] vector Address of interrupt handler function
*/
__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
{
uint32_t *vectors = (uint32_t *)0x0U;
vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector;
}
/**
\brief Get Interrupt Vector
\details Reads an interrupt vector from interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Address of interrupt handler function
*/
__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
{
uint32_t *vectors = (uint32_t *)0x0U;
return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET];
}
/**
\brief System Reset
\details Initiates a system reset request to reset the MCU.
*/
__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
SCB_AIRCR_SYSRESETREQ_Msk);
__DSB(); /* Ensure completion of memory access */
for(;;) /* wait until reset */
{
__NOP();
}
}
/*@} end of CMSIS_Core_NVICFunctions */
/* ########################## FPU functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_FpuFunctions FPU Functions
\brief Function that provides FPU type.
@{
*/
/**
\brief get FPU type
\details returns the FPU type
\returns
- \b 0: No FPU
- \b 1: Single precision FPU
- \b 2: Double + Single precision FPU
*/
__STATIC_INLINE uint32_t SCB_GetFPUType(void)
{
return 0U; /* No FPU */
}
/*@} end of CMSIS_Core_FpuFunctions */
/* ################################## SysTick function ############################################ */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
\brief Functions that configure the System.
@{
*/
#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
/**
\brief System Tick Configuration
\details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
{
return (1UL); /* Reload value impossible */
}
SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0UL); /* Function successful */
}
#endif
/*@} end of CMSIS_Core_SysTickFunctions */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM1_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,270 @@
/******************************************************************************
* @file mpu_armv7.h
* @brief CMSIS MPU API for Armv7-M MPU
* @version V5.0.4
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2017-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_MPU_ARMV7_H
#define ARM_MPU_ARMV7_H
#define ARM_MPU_REGION_SIZE_32B ((uint8_t)0x04U) ///!< MPU Region Size 32 Bytes
#define ARM_MPU_REGION_SIZE_64B ((uint8_t)0x05U) ///!< MPU Region Size 64 Bytes
#define ARM_MPU_REGION_SIZE_128B ((uint8_t)0x06U) ///!< MPU Region Size 128 Bytes
#define ARM_MPU_REGION_SIZE_256B ((uint8_t)0x07U) ///!< MPU Region Size 256 Bytes
#define ARM_MPU_REGION_SIZE_512B ((uint8_t)0x08U) ///!< MPU Region Size 512 Bytes
#define ARM_MPU_REGION_SIZE_1KB ((uint8_t)0x09U) ///!< MPU Region Size 1 KByte
#define ARM_MPU_REGION_SIZE_2KB ((uint8_t)0x0AU) ///!< MPU Region Size 2 KBytes
#define ARM_MPU_REGION_SIZE_4KB ((uint8_t)0x0BU) ///!< MPU Region Size 4 KBytes
#define ARM_MPU_REGION_SIZE_8KB ((uint8_t)0x0CU) ///!< MPU Region Size 8 KBytes
#define ARM_MPU_REGION_SIZE_16KB ((uint8_t)0x0DU) ///!< MPU Region Size 16 KBytes
#define ARM_MPU_REGION_SIZE_32KB ((uint8_t)0x0EU) ///!< MPU Region Size 32 KBytes
#define ARM_MPU_REGION_SIZE_64KB ((uint8_t)0x0FU) ///!< MPU Region Size 64 KBytes
#define ARM_MPU_REGION_SIZE_128KB ((uint8_t)0x10U) ///!< MPU Region Size 128 KBytes
#define ARM_MPU_REGION_SIZE_256KB ((uint8_t)0x11U) ///!< MPU Region Size 256 KBytes
#define ARM_MPU_REGION_SIZE_512KB ((uint8_t)0x12U) ///!< MPU Region Size 512 KBytes
#define ARM_MPU_REGION_SIZE_1MB ((uint8_t)0x13U) ///!< MPU Region Size 1 MByte
#define ARM_MPU_REGION_SIZE_2MB ((uint8_t)0x14U) ///!< MPU Region Size 2 MBytes
#define ARM_MPU_REGION_SIZE_4MB ((uint8_t)0x15U) ///!< MPU Region Size 4 MBytes
#define ARM_MPU_REGION_SIZE_8MB ((uint8_t)0x16U) ///!< MPU Region Size 8 MBytes
#define ARM_MPU_REGION_SIZE_16MB ((uint8_t)0x17U) ///!< MPU Region Size 16 MBytes
#define ARM_MPU_REGION_SIZE_32MB ((uint8_t)0x18U) ///!< MPU Region Size 32 MBytes
#define ARM_MPU_REGION_SIZE_64MB ((uint8_t)0x19U) ///!< MPU Region Size 64 MBytes
#define ARM_MPU_REGION_SIZE_128MB ((uint8_t)0x1AU) ///!< MPU Region Size 128 MBytes
#define ARM_MPU_REGION_SIZE_256MB ((uint8_t)0x1BU) ///!< MPU Region Size 256 MBytes
#define ARM_MPU_REGION_SIZE_512MB ((uint8_t)0x1CU) ///!< MPU Region Size 512 MBytes
#define ARM_MPU_REGION_SIZE_1GB ((uint8_t)0x1DU) ///!< MPU Region Size 1 GByte
#define ARM_MPU_REGION_SIZE_2GB ((uint8_t)0x1EU) ///!< MPU Region Size 2 GBytes
#define ARM_MPU_REGION_SIZE_4GB ((uint8_t)0x1FU) ///!< MPU Region Size 4 GBytes
#define ARM_MPU_AP_NONE 0U ///!< MPU Access Permission no access
#define ARM_MPU_AP_PRIV 1U ///!< MPU Access Permission privileged access only
#define ARM_MPU_AP_URO 2U ///!< MPU Access Permission unprivileged access read-only
#define ARM_MPU_AP_FULL 3U ///!< MPU Access Permission full access
#define ARM_MPU_AP_PRO 5U ///!< MPU Access Permission privileged access read-only
#define ARM_MPU_AP_RO 6U ///!< MPU Access Permission read-only access
/** MPU Region Base Address Register Value
*
* \param Region The region to be configured, number 0 to 15.
* \param BaseAddress The base address for the region.
*/
#define ARM_MPU_RBAR(Region, BaseAddress) \
(((BaseAddress) & MPU_RBAR_ADDR_Msk) | \
((Region) & MPU_RBAR_REGION_Msk) | \
(MPU_RBAR_VALID_Msk))
/**
* MPU Memory Access Attributes
*
* \param TypeExtField Type extension field, allows you to configure memory access type, for example strongly ordered, peripheral.
* \param IsShareable Region is shareable between multiple bus masters.
* \param IsCacheable Region is cacheable, i.e. its value may be kept in cache.
* \param IsBufferable Region is bufferable, i.e. using write-back caching. Cacheable but non-bufferable regions use write-through policy.
*/
#define ARM_MPU_ACCESS_(TypeExtField, IsShareable, IsCacheable, IsBufferable) \
((((TypeExtField ) << MPU_RASR_TEX_Pos) & MPU_RASR_TEX_Msk) | \
(((IsShareable ) << MPU_RASR_S_Pos) & MPU_RASR_S_Msk) | \
(((IsCacheable ) << MPU_RASR_C_Pos) & MPU_RASR_C_Msk) | \
(((IsBufferable ) << MPU_RASR_B_Pos) & MPU_RASR_B_Msk))
/**
* MPU Region Attribute and Size Register Value
*
* \param DisableExec Instruction access disable bit, 1= disable instruction fetches.
* \param AccessPermission Data access permissions, allows you to configure read/write access for User and Privileged mode.
* \param AccessAttributes Memory access attribution, see \ref ARM_MPU_ACCESS_.
* \param SubRegionDisable Sub-region disable field.
* \param Size Region size of the region to be configured, for example 4K, 8K.
*/
#define ARM_MPU_RASR_EX(DisableExec, AccessPermission, AccessAttributes, SubRegionDisable, Size) \
((((DisableExec ) << MPU_RASR_XN_Pos) & MPU_RASR_XN_Msk) | \
(((AccessPermission) << MPU_RASR_AP_Pos) & MPU_RASR_AP_Msk) | \
(((AccessAttributes) ) & (MPU_RASR_TEX_Msk | MPU_RASR_S_Msk | MPU_RASR_C_Msk | MPU_RASR_B_Msk)))
/**
* MPU Region Attribute and Size Register Value
*
* \param DisableExec Instruction access disable bit, 1= disable instruction fetches.
* \param AccessPermission Data access permissions, allows you to configure read/write access for User and Privileged mode.
* \param TypeExtField Type extension field, allows you to configure memory access type, for example strongly ordered, peripheral.
* \param IsShareable Region is shareable between multiple bus masters.
* \param IsCacheable Region is cacheable, i.e. its value may be kept in cache.
* \param IsBufferable Region is bufferable, i.e. using write-back caching. Cacheable but non-bufferable regions use write-through policy.
* \param SubRegionDisable Sub-region disable field.
* \param Size Region size of the region to be configured, for example 4K, 8K.
*/
#define ARM_MPU_RASR(DisableExec, AccessPermission, TypeExtField, IsShareable, IsCacheable, IsBufferable, SubRegionDisable, Size) \
ARM_MPU_RASR_EX(DisableExec, AccessPermission, ARM_MPU_ACCESS_(TypeExtField, IsShareable, IsCacheable, IsBufferable), SubRegionDisable, Size)
/**
* MPU Memory Access Attribute for strongly ordered memory.
* - TEX: 000b
* - Shareable
* - Non-cacheable
* - Non-bufferable
*/
#define ARM_MPU_ACCESS_ORDERED ARM_MPU_ACCESS_(0U, 1U, 0U, 0U)
/**
* MPU Memory Access Attribute for device memory.
* - TEX: 000b (if non-shareable) or 010b (if shareable)
* - Shareable or non-shareable
* - Non-cacheable
* - Bufferable (if shareable) or non-bufferable (if non-shareable)
*
* \param IsShareable Configures the device memory as shareable or non-shareable.
*/
#define ARM_MPU_ACCESS_DEVICE(IsShareable) ((IsShareable) ? ARM_MPU_ACCESS_(0U, 1U, 0U, 1U) : ARM_MPU_ACCESS_(2U, 0U, 0U, 0U))
/**
* MPU Memory Access Attribute for normal memory.
* - TEX: 1BBb (reflecting outer cacheability rules)
* - Shareable or non-shareable
* - Cacheable or non-cacheable (reflecting inner cacheability rules)
* - Bufferable or non-bufferable (reflecting inner cacheability rules)
*
* \param OuterCp Configures the outer cache policy.
* \param InnerCp Configures the inner cache policy.
* \param IsShareable Configures the memory as shareable or non-shareable.
*/
#define ARM_MPU_ACCESS_NORMAL(OuterCp, InnerCp, IsShareable) ARM_MPU_ACCESS_((4U | (OuterCp)), IsShareable, ((InnerCp) & 2U), ((InnerCp) & 1U))
/**
* MPU Memory Access Attribute non-cacheable policy.
*/
#define ARM_MPU_CACHEP_NOCACHE 0U
/**
* MPU Memory Access Attribute write-back, write and read allocate policy.
*/
#define ARM_MPU_CACHEP_WB_WRA 1U
/**
* MPU Memory Access Attribute write-through, no write allocate policy.
*/
#define ARM_MPU_CACHEP_WT_NWA 2U
/**
* MPU Memory Access Attribute write-back, no write allocate policy.
*/
#define ARM_MPU_CACHEP_WB_NWA 3U
/**
* Struct for a single MPU Region
*/
typedef struct {
uint32_t RBAR; //!< The region base address register value (RBAR)
uint32_t RASR; //!< The region attribute and size register value (RASR) \ref MPU_RASR
} ARM_MPU_Region_t;
/** Enable the MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable(uint32_t MPU_Control)
{
__DSB();
__ISB();
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
}
/** Disable the MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable(void)
{
__DSB();
__ISB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk;
}
/** Clear and disable the given MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion(uint32_t rnr)
{
MPU->RNR = rnr;
MPU->RASR = 0U;
}
/** Configure an MPU region.
* \param rbar Value for RBAR register.
* \param rsar Value for RSAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion(uint32_t rbar, uint32_t rasr)
{
MPU->RBAR = rbar;
MPU->RASR = rasr;
}
/** Configure the given MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rsar Value for RSAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegionEx(uint32_t rnr, uint32_t rbar, uint32_t rasr)
{
MPU->RNR = rnr;
MPU->RBAR = rbar;
MPU->RASR = rasr;
}
/** Memcopy with strictly ordered memory access, e.g. for register targets.
* \param dst Destination data is copied to.
* \param src Source data is copied from.
* \param len Amount of data words to be copied.
*/
__STATIC_INLINE void orderedCpy(volatile uint32_t* dst, const uint32_t* __RESTRICT src, uint32_t len)
{
uint32_t i;
for (i = 0U; i < len; ++i)
{
dst[i] = src[i];
}
}
/** Load the given number of MPU regions from a table.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load(ARM_MPU_Region_t const* table, uint32_t cnt)
{
const uint32_t rowWordSize = sizeof(ARM_MPU_Region_t)/4U;
while (cnt > MPU_TYPE_RALIASES) {
orderedCpy(&(MPU->RBAR), &(table->RBAR), MPU_TYPE_RALIASES*rowWordSize);
table += MPU_TYPE_RALIASES;
cnt -= MPU_TYPE_RALIASES;
}
orderedCpy(&(MPU->RBAR), &(table->RBAR), cnt*rowWordSize);
}
#endif

View File

@ -0,0 +1,333 @@
/******************************************************************************
* @file mpu_armv8.h
* @brief CMSIS MPU API for Armv8-M MPU
* @version V5.0.4
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2017-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_MPU_ARMV8_H
#define ARM_MPU_ARMV8_H
/** \brief Attribute for device memory (outer only) */
#define ARM_MPU_ATTR_DEVICE ( 0U )
/** \brief Attribute for non-cacheable, normal memory */
#define ARM_MPU_ATTR_NON_CACHEABLE ( 4U )
/** \brief Attribute for normal memory (outer and inner)
* \param NT Non-Transient: Set to 1 for non-transient data.
* \param WB Write-Back: Set to 1 to use write-back update policy.
* \param RA Read Allocation: Set to 1 to use cache allocation on read miss.
* \param WA Write Allocation: Set to 1 to use cache allocation on write miss.
*/
#define ARM_MPU_ATTR_MEMORY_(NT, WB, RA, WA) \
(((NT & 1U) << 3U) | ((WB & 1U) << 2U) | ((RA & 1U) << 1U) | (WA & 1U))
/** \brief Device memory type non Gathering, non Re-ordering, non Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGnRnE (0U)
/** \brief Device memory type non Gathering, non Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGnRE (1U)
/** \brief Device memory type non Gathering, Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGRE (2U)
/** \brief Device memory type Gathering, Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_GRE (3U)
/** \brief Memory Attribute
* \param O Outer memory attributes
* \param I O == ARM_MPU_ATTR_DEVICE: Device memory attributes, else: Inner memory attributes
*/
#define ARM_MPU_ATTR(O, I) (((O & 0xFU) << 4U) | (((O & 0xFU) != 0U) ? (I & 0xFU) : ((I & 0x3U) << 2U)))
/** \brief Normal memory non-shareable */
#define ARM_MPU_SH_NON (0U)
/** \brief Normal memory outer shareable */
#define ARM_MPU_SH_OUTER (2U)
/** \brief Normal memory inner shareable */
#define ARM_MPU_SH_INNER (3U)
/** \brief Memory access permissions
* \param RO Read-Only: Set to 1 for read-only memory.
* \param NP Non-Privileged: Set to 1 for non-privileged memory.
*/
#define ARM_MPU_AP_(RO, NP) (((RO & 1U) << 1U) | (NP & 1U))
/** \brief Region Base Address Register value
* \param BASE The base address bits [31:5] of a memory region. The value is zero extended. Effective address gets 32 byte aligned.
* \param SH Defines the Shareability domain for this memory region.
* \param RO Read-Only: Set to 1 for a read-only memory region.
* \param NP Non-Privileged: Set to 1 for a non-privileged memory region.
* \oaram XN eXecute Never: Set to 1 for a non-executable memory region.
*/
#define ARM_MPU_RBAR(BASE, SH, RO, NP, XN) \
((BASE & MPU_RBAR_BASE_Msk) | \
((SH << MPU_RBAR_SH_Pos) & MPU_RBAR_SH_Msk) | \
((ARM_MPU_AP_(RO, NP) << MPU_RBAR_AP_Pos) & MPU_RBAR_AP_Msk) | \
((XN << MPU_RBAR_XN_Pos) & MPU_RBAR_XN_Msk))
/** \brief Region Limit Address Register value
* \param LIMIT The limit address bits [31:5] for this memory region. The value is one extended.
* \param IDX The attribute index to be associated with this memory region.
*/
#define ARM_MPU_RLAR(LIMIT, IDX) \
((LIMIT & MPU_RLAR_LIMIT_Msk) | \
((IDX << MPU_RLAR_AttrIndx_Pos) & MPU_RLAR_AttrIndx_Msk) | \
(MPU_RLAR_EN_Msk))
/**
* Struct for a single MPU Region
*/
typedef struct {
uint32_t RBAR; /*!< Region Base Address Register value */
uint32_t RLAR; /*!< Region Limit Address Register value */
} ARM_MPU_Region_t;
/** Enable the MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable(uint32_t MPU_Control)
{
__DSB();
__ISB();
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
}
/** Disable the MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable(void)
{
__DSB();
__ISB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk;
}
#ifdef MPU_NS
/** Enable the Non-secure MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable_NS(uint32_t MPU_Control)
{
__DSB();
__ISB();
MPU_NS->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB_NS->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
}
/** Disable the Non-secure MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable_NS(void)
{
__DSB();
__ISB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB_NS->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU_NS->CTRL &= ~MPU_CTRL_ENABLE_Msk;
}
#endif
/** Set the memory attribute encoding to the given MPU.
* \param mpu Pointer to the MPU to be configured.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttrEx(MPU_Type* mpu, uint8_t idx, uint8_t attr)
{
const uint8_t reg = idx / 4U;
const uint32_t pos = ((idx % 4U) * 8U);
const uint32_t mask = 0xFFU << pos;
if (reg >= (sizeof(mpu->MAIR) / sizeof(mpu->MAIR[0]))) {
return; // invalid index
}
mpu->MAIR[reg] = ((mpu->MAIR[reg] & ~mask) | ((attr << pos) & mask));
}
/** Set the memory attribute encoding.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttr(uint8_t idx, uint8_t attr)
{
ARM_MPU_SetMemAttrEx(MPU, idx, attr);
}
#ifdef MPU_NS
/** Set the memory attribute encoding to the Non-secure MPU.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttr_NS(uint8_t idx, uint8_t attr)
{
ARM_MPU_SetMemAttrEx(MPU_NS, idx, attr);
}
#endif
/** Clear and disable the given MPU region of the given MPU.
* \param mpu Pointer to MPU to be used.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegionEx(MPU_Type* mpu, uint32_t rnr)
{
mpu->RNR = rnr;
mpu->RLAR = 0U;
}
/** Clear and disable the given MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion(uint32_t rnr)
{
ARM_MPU_ClrRegionEx(MPU, rnr);
}
#ifdef MPU_NS
/** Clear and disable the given Non-secure MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion_NS(uint32_t rnr)
{
ARM_MPU_ClrRegionEx(MPU_NS, rnr);
}
#endif
/** Configure the given MPU region of the given MPU.
* \param mpu Pointer to MPU to be used.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegionEx(MPU_Type* mpu, uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
mpu->RNR = rnr;
mpu->RBAR = rbar;
mpu->RLAR = rlar;
}
/** Configure the given MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion(uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
ARM_MPU_SetRegionEx(MPU, rnr, rbar, rlar);
}
#ifdef MPU_NS
/** Configure the given Non-secure MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion_NS(uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
ARM_MPU_SetRegionEx(MPU_NS, rnr, rbar, rlar);
}
#endif
/** Memcopy with strictly ordered memory access, e.g. for register targets.
* \param dst Destination data is copied to.
* \param src Source data is copied from.
* \param len Amount of data words to be copied.
*/
__STATIC_INLINE void orderedCpy(volatile uint32_t* dst, const uint32_t* __RESTRICT src, uint32_t len)
{
uint32_t i;
for (i = 0U; i < len; ++i)
{
dst[i] = src[i];
}
}
/** Load the given number of MPU regions from a table to the given MPU.
* \param mpu Pointer to the MPU registers to be used.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_LoadEx(MPU_Type* mpu, uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
const uint32_t rowWordSize = sizeof(ARM_MPU_Region_t)/4U;
if (cnt == 1U) {
mpu->RNR = rnr;
orderedCpy(&(mpu->RBAR), &(table->RBAR), rowWordSize);
} else {
uint32_t rnrBase = rnr & ~(MPU_TYPE_RALIASES-1U);
uint32_t rnrOffset = rnr % MPU_TYPE_RALIASES;
mpu->RNR = rnrBase;
while ((rnrOffset + cnt) > MPU_TYPE_RALIASES) {
uint32_t c = MPU_TYPE_RALIASES - rnrOffset;
orderedCpy(&(mpu->RBAR)+(rnrOffset*2U), &(table->RBAR), c*rowWordSize);
table += c;
cnt -= c;
rnrOffset = 0U;
rnrBase += MPU_TYPE_RALIASES;
mpu->RNR = rnrBase;
}
orderedCpy(&(mpu->RBAR)+(rnrOffset*2U), &(table->RBAR), cnt*rowWordSize);
}
}
/** Load the given number of MPU regions from a table.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load(uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
ARM_MPU_LoadEx(MPU, rnr, table, cnt);
}
#ifdef MPU_NS
/** Load the given number of MPU regions from a table to the Non-secure MPU.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load_NS(uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
ARM_MPU_LoadEx(MPU_NS, rnr, table, cnt);
}
#endif
#endif

View File

@ -0,0 +1,70 @@
/******************************************************************************
* @file tz_context.h
* @brief Context Management for Armv8-M TrustZone
* @version V1.0.1
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2017-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef TZ_CONTEXT_H
#define TZ_CONTEXT_H
#include <stdint.h>
#ifndef TZ_MODULEID_T
#define TZ_MODULEID_T
/// \details Data type that identifies secure software modules called by a process.
typedef uint32_t TZ_ModuleId_t;
#endif
/// \details TZ Memory ID identifies an allocated memory slot.
typedef uint32_t TZ_MemoryId_t;
/// Initialize secure context memory system
/// \return execution status (1: success, 0: error)
uint32_t TZ_InitContextSystem_S (void);
/// Allocate context memory for calling secure software modules in TrustZone
/// \param[in] module identifies software modules called from non-secure mode
/// \return value != 0 id TrustZone memory slot identifier
/// \return value 0 no memory available or internal error
TZ_MemoryId_t TZ_AllocModuleContext_S (TZ_ModuleId_t module);
/// Free context memory that was previously allocated with \ref TZ_AllocModuleContext_S
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_FreeModuleContext_S (TZ_MemoryId_t id);
/// Load secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_LoadContext_S (TZ_MemoryId_t id);
/// Store secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_StoreContext_S (TZ_MemoryId_t id);
#endif // TZ_CONTEXT_H

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,698 @@
/* ----------------------------------------------------------------------
* $Date: 5. February 2013
* $Revision: V1.02
*
* Project: CMSIS-RTOS API
* Title: cmsis_os.h template header file
*
* Version 0.02
* Initial Proposal Phase
* Version 0.03
* osKernelStart added, optional feature: main started as thread
* osSemaphores have standard behavior
* osTimerCreate does not start the timer, added osTimerStart
* osThreadPass is renamed to osThreadYield
* Version 1.01
* Support for C++ interface
* - const attribute removed from the osXxxxDef_t typedef's
* - const attribute added to the osXxxxDef macros
* Added: osTimerDelete, osMutexDelete, osSemaphoreDelete
* Added: osKernelInitialize
* Version 1.02
* Control functions for short timeouts in microsecond resolution:
* Added: osKernelSysTick, osKernelSysTickFrequency, osKernelSysTickMicroSec
* Removed: osSignalGet
*----------------------------------------------------------------------------
*
* Copyright (c) 2013-2017 ARM LIMITED
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*---------------------------------------------------------------------------*/
#ifndef _CMSIS_OS_H
#define _CMSIS_OS_H
/// \note MUST REMAIN UNCHANGED: \b osCMSIS identifies the CMSIS-RTOS API version.
#define osCMSIS 0x10002 ///< API version (main [31:16] .sub [15:0])
/// \note CAN BE CHANGED: \b osCMSIS_KERNEL identifies the underlying RTOS kernel and version number.
#define osCMSIS_KERNEL 0x10000 ///< RTOS identification and version (main [31:16] .sub [15:0])
/// \note MUST REMAIN UNCHANGED: \b osKernelSystemId shall be consistent in every CMSIS-RTOS.
#define osKernelSystemId "KERNEL V1.00" ///< RTOS identification string
/// \note MUST REMAIN UNCHANGED: \b osFeature_xxx shall be consistent in every CMSIS-RTOS.
#define osFeature_MainThread 1 ///< main thread 1=main can be thread, 0=not available
#define osFeature_Pool 1 ///< Memory Pools: 1=available, 0=not available
#define osFeature_MailQ 1 ///< Mail Queues: 1=available, 0=not available
#define osFeature_MessageQ 1 ///< Message Queues: 1=available, 0=not available
#define osFeature_Signals 8 ///< maximum number of Signal Flags available per thread
#define osFeature_Semaphore 30 ///< maximum count for \ref osSemaphoreCreate function
#define osFeature_Wait 1 ///< osWait function: 1=available, 0=not available
#define osFeature_SysTick 1 ///< osKernelSysTick functions: 1=available, 0=not available
#include <stdint.h>
#include <stddef.h>
#ifdef __cplusplus
extern "C"
{
#endif
// ==== Enumeration, structures, defines ====
/// Priority used for thread control.
/// \note MUST REMAIN UNCHANGED: \b osPriority shall be consistent in every CMSIS-RTOS.
typedef enum {
osPriorityIdle = -3, ///< priority: idle (lowest)
osPriorityLow = -2, ///< priority: low
osPriorityBelowNormal = -1, ///< priority: below normal
osPriorityNormal = 0, ///< priority: normal (default)
osPriorityAboveNormal = +1, ///< priority: above normal
osPriorityHigh = +2, ///< priority: high
osPriorityRealtime = +3, ///< priority: realtime (highest)
osPriorityError = 0x84 ///< system cannot determine priority or thread has illegal priority
} osPriority;
/// Timeout value.
/// \note MUST REMAIN UNCHANGED: \b osWaitForever shall be consistent in every CMSIS-RTOS.
#define osWaitForever 0xFFFFFFFF ///< wait forever timeout value
/// Status code values returned by CMSIS-RTOS functions.
/// \note MUST REMAIN UNCHANGED: \b osStatus shall be consistent in every CMSIS-RTOS.
typedef enum {
osOK = 0, ///< function completed; no error or event occurred.
osEventSignal = 0x08, ///< function completed; signal event occurred.
osEventMessage = 0x10, ///< function completed; message event occurred.
osEventMail = 0x20, ///< function completed; mail event occurred.
osEventTimeout = 0x40, ///< function completed; timeout occurred.
osErrorParameter = 0x80, ///< parameter error: a mandatory parameter was missing or specified an incorrect object.
osErrorResource = 0x81, ///< resource not available: a specified resource was not available.
osErrorTimeoutResource = 0xC1, ///< resource not available within given time: a specified resource was not available within the timeout period.
osErrorISR = 0x82, ///< not allowed in ISR context: the function cannot be called from interrupt service routines.
osErrorISRRecursive = 0x83, ///< function called multiple times from ISR with same object.
osErrorPriority = 0x84, ///< system cannot determine priority or thread has illegal priority.
osErrorNoMemory = 0x85, ///< system is out of memory: it was impossible to allocate or reserve memory for the operation.
osErrorValue = 0x86, ///< value of a parameter is out of range.
osErrorOS = 0xFF, ///< unspecified RTOS error: run-time error but no other error message fits.
os_status_reserved = 0x7FFFFFFF ///< prevent from enum down-size compiler optimization.
} osStatus;
/// Timer type value for the timer definition.
/// \note MUST REMAIN UNCHANGED: \b os_timer_type shall be consistent in every CMSIS-RTOS.
typedef enum {
osTimerOnce = 0, ///< one-shot timer
osTimerPeriodic = 1 ///< repeating timer
} os_timer_type;
/// Entry point of a thread.
/// \note MUST REMAIN UNCHANGED: \b os_pthread shall be consistent in every CMSIS-RTOS.
typedef void (*os_pthread) (void const *argument);
/// Entry point of a timer call back function.
/// \note MUST REMAIN UNCHANGED: \b os_ptimer shall be consistent in every CMSIS-RTOS.
typedef void (*os_ptimer) (void const *argument);
// >>> the following data type definitions may shall adapted towards a specific RTOS
/// Thread ID identifies the thread (pointer to a thread control block).
/// \note CAN BE CHANGED: \b os_thread_cb is implementation specific in every CMSIS-RTOS.
typedef struct os_thread_cb *osThreadId;
/// Timer ID identifies the timer (pointer to a timer control block).
/// \note CAN BE CHANGED: \b os_timer_cb is implementation specific in every CMSIS-RTOS.
typedef struct os_timer_cb *osTimerId;
/// Mutex ID identifies the mutex (pointer to a mutex control block).
/// \note CAN BE CHANGED: \b os_mutex_cb is implementation specific in every CMSIS-RTOS.
typedef struct os_mutex_cb *osMutexId;
/// Semaphore ID identifies the semaphore (pointer to a semaphore control block).
/// \note CAN BE CHANGED: \b os_semaphore_cb is implementation specific in every CMSIS-RTOS.
typedef struct os_semaphore_cb *osSemaphoreId;
/// Pool ID identifies the memory pool (pointer to a memory pool control block).
/// \note CAN BE CHANGED: \b os_pool_cb is implementation specific in every CMSIS-RTOS.
typedef struct os_pool_cb *osPoolId;
/// Message ID identifies the message queue (pointer to a message queue control block).
/// \note CAN BE CHANGED: \b os_messageQ_cb is implementation specific in every CMSIS-RTOS.
typedef struct os_messageQ_cb *osMessageQId;
/// Mail ID identifies the mail queue (pointer to a mail queue control block).
/// \note CAN BE CHANGED: \b os_mailQ_cb is implementation specific in every CMSIS-RTOS.
typedef struct os_mailQ_cb *osMailQId;
/// Thread Definition structure contains startup information of a thread.
/// \note CAN BE CHANGED: \b os_thread_def is implementation specific in every CMSIS-RTOS.
typedef struct os_thread_def {
os_pthread pthread; ///< start address of thread function
osPriority tpriority; ///< initial thread priority
uint32_t instances; ///< maximum number of instances of that thread function
uint32_t stacksize; ///< stack size requirements in bytes; 0 is default stack size
} osThreadDef_t;
/// Timer Definition structure contains timer parameters.
/// \note CAN BE CHANGED: \b os_timer_def is implementation specific in every CMSIS-RTOS.
typedef struct os_timer_def {
os_ptimer ptimer; ///< start address of a timer function
} osTimerDef_t;
/// Mutex Definition structure contains setup information for a mutex.
/// \note CAN BE CHANGED: \b os_mutex_def is implementation specific in every CMSIS-RTOS.
typedef struct os_mutex_def {
uint32_t dummy; ///< dummy value.
} osMutexDef_t;
/// Semaphore Definition structure contains setup information for a semaphore.
/// \note CAN BE CHANGED: \b os_semaphore_def is implementation specific in every CMSIS-RTOS.
typedef struct os_semaphore_def {
uint32_t dummy; ///< dummy value.
} osSemaphoreDef_t;
/// Definition structure for memory block allocation.
/// \note CAN BE CHANGED: \b os_pool_def is implementation specific in every CMSIS-RTOS.
typedef struct os_pool_def {
uint32_t pool_sz; ///< number of items (elements) in the pool
uint32_t item_sz; ///< size of an item
void *pool; ///< pointer to memory for pool
} osPoolDef_t;
/// Definition structure for message queue.
/// \note CAN BE CHANGED: \b os_messageQ_def is implementation specific in every CMSIS-RTOS.
typedef struct os_messageQ_def {
uint32_t queue_sz; ///< number of elements in the queue
uint32_t item_sz; ///< size of an item
void *pool; ///< memory array for messages
} osMessageQDef_t;
/// Definition structure for mail queue.
/// \note CAN BE CHANGED: \b os_mailQ_def is implementation specific in every CMSIS-RTOS.
typedef struct os_mailQ_def {
uint32_t queue_sz; ///< number of elements in the queue
uint32_t item_sz; ///< size of an item
void *pool; ///< memory array for mail
} osMailQDef_t;
/// Event structure contains detailed information about an event.
/// \note MUST REMAIN UNCHANGED: \b os_event shall be consistent in every CMSIS-RTOS.
/// However the struct may be extended at the end.
typedef struct {
osStatus status; ///< status code: event or error information
union {
uint32_t v; ///< message as 32-bit value
void *p; ///< message or mail as void pointer
int32_t signals; ///< signal flags
} value; ///< event value
union {
osMailQId mail_id; ///< mail id obtained by \ref osMailCreate
osMessageQId message_id; ///< message id obtained by \ref osMessageCreate
} def; ///< event definition
} osEvent;
// ==== Kernel Control Functions ====
/// Initialize the RTOS Kernel for creating objects.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osKernelInitialize shall be consistent in every CMSIS-RTOS.
osStatus osKernelInitialize (void);
/// Start the RTOS Kernel.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osKernelStart shall be consistent in every CMSIS-RTOS.
osStatus osKernelStart (void);
/// Check if the RTOS kernel is already started.
/// \note MUST REMAIN UNCHANGED: \b osKernelRunning shall be consistent in every CMSIS-RTOS.
/// \return 0 RTOS is not started, 1 RTOS is started.
int32_t osKernelRunning(void);
#if (defined (osFeature_SysTick) && (osFeature_SysTick != 0)) // System Timer available
/// Get the RTOS kernel system timer counter
/// \note MUST REMAIN UNCHANGED: \b osKernelSysTick shall be consistent in every CMSIS-RTOS.
/// \return RTOS kernel system timer as 32-bit value
uint32_t osKernelSysTick (void);
/// The RTOS kernel system timer frequency in Hz
/// \note Reflects the system timer setting and is typically defined in a configuration file.
#define osKernelSysTickFrequency 100000000
/// Convert a microseconds value to a RTOS kernel system timer value.
/// \param microsec time value in microseconds.
/// \return time value normalized to the \ref osKernelSysTickFrequency
#define osKernelSysTickMicroSec(microsec) (((uint64_t)microsec * (osKernelSysTickFrequency)) / 1000000)
#endif // System Timer available
// ==== Thread Management ====
/// Create a Thread Definition with function, priority, and stack requirements.
/// \param name name of the thread function.
/// \param priority initial priority of the thread function.
/// \param instances number of possible thread instances.
/// \param stacksz stack size (in bytes) requirements for the thread function.
/// \note CAN BE CHANGED: The parameters to \b osThreadDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osThreadDef(name, priority, instances, stacksz) \
extern const osThreadDef_t os_thread_def_##name
#else // define the object
#define osThreadDef(name, priority, instances, stacksz) \
const osThreadDef_t os_thread_def_##name = \
{ (name), (priority), (instances), (stacksz) }
#endif
/// Access a Thread definition.
/// \param name name of the thread definition object.
/// \note CAN BE CHANGED: The parameter to \b osThread shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osThread(name) \
&os_thread_def_##name
/// Create a thread and add it to Active Threads and set it to state READY.
/// \param[in] thread_def thread definition referenced with \ref osThread.
/// \param[in] argument pointer that is passed to the thread function as start argument.
/// \return thread ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osThreadCreate shall be consistent in every CMSIS-RTOS.
osThreadId osThreadCreate (const osThreadDef_t *thread_def, void *argument);
/// Return the thread ID of the current running thread.
/// \return thread ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osThreadGetId shall be consistent in every CMSIS-RTOS.
osThreadId osThreadGetId (void);
/// Terminate execution of a thread and remove it from Active Threads.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osThreadTerminate shall be consistent in every CMSIS-RTOS.
osStatus osThreadTerminate (osThreadId thread_id);
/// Pass control to next thread that is in state \b READY.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osThreadYield shall be consistent in every CMSIS-RTOS.
osStatus osThreadYield (void);
/// Change priority of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \param[in] priority new priority value for the thread function.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osThreadSetPriority shall be consistent in every CMSIS-RTOS.
osStatus osThreadSetPriority (osThreadId thread_id, osPriority priority);
/// Get current priority of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \return current priority value of the thread function.
/// \note MUST REMAIN UNCHANGED: \b osThreadGetPriority shall be consistent in every CMSIS-RTOS.
osPriority osThreadGetPriority (osThreadId thread_id);
// ==== Generic Wait Functions ====
/// Wait for Timeout (Time Delay).
/// \param[in] millisec \ref CMSIS_RTOS_TimeOutValue "time delay" value
/// \return status code that indicates the execution status of the function.
osStatus osDelay (uint32_t millisec);
#if (defined (osFeature_Wait) && (osFeature_Wait != 0)) // Generic Wait available
/// Wait for Signal, Message, Mail, or Timeout.
/// \param[in] millisec \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out
/// \return event that contains signal, message, or mail information or error code.
/// \note MUST REMAIN UNCHANGED: \b osWait shall be consistent in every CMSIS-RTOS.
osEvent osWait (uint32_t millisec);
#endif // Generic Wait available
// ==== Timer Management Functions ====
/// Define a Timer object.
/// \param name name of the timer object.
/// \param function name of the timer call back function.
/// \note CAN BE CHANGED: The parameter to \b osTimerDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osTimerDef(name, function) \
extern const osTimerDef_t os_timer_def_##name
#else // define the object
#define osTimerDef(name, function) \
const osTimerDef_t os_timer_def_##name = \
{ (function) }
#endif
/// Access a Timer definition.
/// \param name name of the timer object.
/// \note CAN BE CHANGED: The parameter to \b osTimer shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osTimer(name) \
&os_timer_def_##name
/// Create a timer.
/// \param[in] timer_def timer object referenced with \ref osTimer.
/// \param[in] type osTimerOnce for one-shot or osTimerPeriodic for periodic behavior.
/// \param[in] argument argument to the timer call back function.
/// \return timer ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osTimerCreate shall be consistent in every CMSIS-RTOS.
osTimerId osTimerCreate (const osTimerDef_t *timer_def, os_timer_type type, void *argument);
/// Start or restart a timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerCreate.
/// \param[in] millisec \ref CMSIS_RTOS_TimeOutValue "time delay" value of the timer.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osTimerStart shall be consistent in every CMSIS-RTOS.
osStatus osTimerStart (osTimerId timer_id, uint32_t millisec);
/// Stop the timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osTimerStop shall be consistent in every CMSIS-RTOS.
osStatus osTimerStop (osTimerId timer_id);
/// Delete a timer that was created by \ref osTimerCreate.
/// \param[in] timer_id timer ID obtained by \ref osTimerCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osTimerDelete shall be consistent in every CMSIS-RTOS.
osStatus osTimerDelete (osTimerId timer_id);
// ==== Signal Management ====
/// Set the specified Signal Flags of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \param[in] signals specifies the signal flags of the thread that should be set.
/// \return previous signal flags of the specified thread or 0x80000000 in case of incorrect parameters.
/// \note MUST REMAIN UNCHANGED: \b osSignalSet shall be consistent in every CMSIS-RTOS.
int32_t osSignalSet (osThreadId thread_id, int32_t signals);
/// Clear the specified Signal Flags of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \param[in] signals specifies the signal flags of the thread that shall be cleared.
/// \return previous signal flags of the specified thread or 0x80000000 in case of incorrect parameters or call from ISR.
/// \note MUST REMAIN UNCHANGED: \b osSignalClear shall be consistent in every CMSIS-RTOS.
int32_t osSignalClear (osThreadId thread_id, int32_t signals);
/// Wait for one or more Signal Flags to become signaled for the current \b RUNNING thread.
/// \param[in] signals wait until all specified signal flags set or 0 for any single signal flag.
/// \param[in] millisec \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return event flag information or error code.
/// \note MUST REMAIN UNCHANGED: \b osSignalWait shall be consistent in every CMSIS-RTOS.
osEvent osSignalWait (int32_t signals, uint32_t millisec);
// ==== Mutex Management ====
/// Define a Mutex.
/// \param name name of the mutex object.
/// \note CAN BE CHANGED: The parameter to \b osMutexDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osMutexDef(name) \
extern const osMutexDef_t os_mutex_def_##name
#else // define the object
#define osMutexDef(name) \
const osMutexDef_t os_mutex_def_##name = { 0 }
#endif
/// Access a Mutex definition.
/// \param name name of the mutex object.
/// \note CAN BE CHANGED: The parameter to \b osMutex shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osMutex(name) \
&os_mutex_def_##name
/// Create and Initialize a Mutex object.
/// \param[in] mutex_def mutex definition referenced with \ref osMutex.
/// \return mutex ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMutexCreate shall be consistent in every CMSIS-RTOS.
osMutexId osMutexCreate (const osMutexDef_t *mutex_def);
/// Wait until a Mutex becomes available.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexCreate.
/// \param[in] millisec \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMutexWait shall be consistent in every CMSIS-RTOS.
osStatus osMutexWait (osMutexId mutex_id, uint32_t millisec);
/// Release a Mutex that was obtained by \ref osMutexWait.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMutexRelease shall be consistent in every CMSIS-RTOS.
osStatus osMutexRelease (osMutexId mutex_id);
/// Delete a Mutex that was created by \ref osMutexCreate.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMutexDelete shall be consistent in every CMSIS-RTOS.
osStatus osMutexDelete (osMutexId mutex_id);
// ==== Semaphore Management Functions ====
#if (defined (osFeature_Semaphore) && (osFeature_Semaphore != 0)) // Semaphore available
/// Define a Semaphore object.
/// \param name name of the semaphore object.
/// \note CAN BE CHANGED: The parameter to \b osSemaphoreDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osSemaphoreDef(name) \
extern const osSemaphoreDef_t os_semaphore_def_##name
#else // define the object
#define osSemaphoreDef(name) \
const osSemaphoreDef_t os_semaphore_def_##name = { 0 }
#endif
/// Access a Semaphore definition.
/// \param name name of the semaphore object.
/// \note CAN BE CHANGED: The parameter to \b osSemaphore shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osSemaphore(name) \
&os_semaphore_def_##name
/// Create and Initialize a Semaphore object used for managing resources.
/// \param[in] semaphore_def semaphore definition referenced with \ref osSemaphore.
/// \param[in] count number of available resources.
/// \return semaphore ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreCreate shall be consistent in every CMSIS-RTOS.
osSemaphoreId osSemaphoreCreate (const osSemaphoreDef_t *semaphore_def, int32_t count);
/// Wait until a Semaphore token becomes available.
/// \param[in] semaphore_id semaphore object referenced with \ref osSemaphoreCreate.
/// \param[in] millisec \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return number of available tokens, or -1 in case of incorrect parameters.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreWait shall be consistent in every CMSIS-RTOS.
int32_t osSemaphoreWait (osSemaphoreId semaphore_id, uint32_t millisec);
/// Release a Semaphore token.
/// \param[in] semaphore_id semaphore object referenced with \ref osSemaphoreCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreRelease shall be consistent in every CMSIS-RTOS.
osStatus osSemaphoreRelease (osSemaphoreId semaphore_id);
/// Delete a Semaphore that was created by \ref osSemaphoreCreate.
/// \param[in] semaphore_id semaphore object referenced with \ref osSemaphoreCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreDelete shall be consistent in every CMSIS-RTOS.
osStatus osSemaphoreDelete (osSemaphoreId semaphore_id);
#endif // Semaphore available
// ==== Memory Pool Management Functions ====
#if (defined (osFeature_Pool) && (osFeature_Pool != 0)) // Memory Pool Management available
/// \brief Define a Memory Pool.
/// \param name name of the memory pool.
/// \param no maximum number of blocks (objects) in the memory pool.
/// \param type data type of a single block (object).
/// \note CAN BE CHANGED: The parameter to \b osPoolDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osPoolDef(name, no, type) \
extern const osPoolDef_t os_pool_def_##name
#else // define the object
#define osPoolDef(name, no, type) \
const osPoolDef_t os_pool_def_##name = \
{ (no), sizeof(type), NULL }
#endif
/// \brief Access a Memory Pool definition.
/// \param name name of the memory pool
/// \note CAN BE CHANGED: The parameter to \b osPool shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osPool(name) \
&os_pool_def_##name
/// Create and Initialize a memory pool.
/// \param[in] pool_def memory pool definition referenced with \ref osPool.
/// \return memory pool ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osPoolCreate shall be consistent in every CMSIS-RTOS.
osPoolId osPoolCreate (const osPoolDef_t *pool_def);
/// Allocate a memory block from a memory pool.
/// \param[in] pool_id memory pool ID obtain referenced with \ref osPoolCreate.
/// \return address of the allocated memory block or NULL in case of no memory available.
/// \note MUST REMAIN UNCHANGED: \b osPoolAlloc shall be consistent in every CMSIS-RTOS.
void *osPoolAlloc (osPoolId pool_id);
/// Allocate a memory block from a memory pool and set memory block to zero.
/// \param[in] pool_id memory pool ID obtain referenced with \ref osPoolCreate.
/// \return address of the allocated memory block or NULL in case of no memory available.
/// \note MUST REMAIN UNCHANGED: \b osPoolCAlloc shall be consistent in every CMSIS-RTOS.
void *osPoolCAlloc (osPoolId pool_id);
/// Return an allocated memory block back to a specific memory pool.
/// \param[in] pool_id memory pool ID obtain referenced with \ref osPoolCreate.
/// \param[in] block address of the allocated memory block that is returned to the memory pool.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osPoolFree shall be consistent in every CMSIS-RTOS.
osStatus osPoolFree (osPoolId pool_id, void *block);
#endif // Memory Pool Management available
// ==== Message Queue Management Functions ====
#if (defined (osFeature_MessageQ) && (osFeature_MessageQ != 0)) // Message Queues available
/// \brief Create a Message Queue Definition.
/// \param name name of the queue.
/// \param queue_sz maximum number of messages in the queue.
/// \param type data type of a single message element (for debugger).
/// \note CAN BE CHANGED: The parameter to \b osMessageQDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osMessageQDef(name, queue_sz, type) \
extern const osMessageQDef_t os_messageQ_def_##name
#else // define the object
#define osMessageQDef(name, queue_sz, type) \
const osMessageQDef_t os_messageQ_def_##name = \
{ (queue_sz), sizeof (type) }
#endif
/// \brief Access a Message Queue Definition.
/// \param name name of the queue
/// \note CAN BE CHANGED: The parameter to \b osMessageQ shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osMessageQ(name) \
&os_messageQ_def_##name
/// Create and Initialize a Message Queue.
/// \param[in] queue_def queue definition referenced with \ref osMessageQ.
/// \param[in] thread_id thread ID (obtained by \ref osThreadCreate or \ref osThreadGetId) or NULL.
/// \return message queue ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMessageCreate shall be consistent in every CMSIS-RTOS.
osMessageQId osMessageCreate (const osMessageQDef_t *queue_def, osThreadId thread_id);
/// Put a Message to a Queue.
/// \param[in] queue_id message queue ID obtained with \ref osMessageCreate.
/// \param[in] info message information.
/// \param[in] millisec \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMessagePut shall be consistent in every CMSIS-RTOS.
osStatus osMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec);
/// Get a Message or Wait for a Message from a Queue.
/// \param[in] queue_id message queue ID obtained with \ref osMessageCreate.
/// \param[in] millisec \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return event information that includes status code.
/// \note MUST REMAIN UNCHANGED: \b osMessageGet shall be consistent in every CMSIS-RTOS.
osEvent osMessageGet (osMessageQId queue_id, uint32_t millisec);
#endif // Message Queues available
// ==== Mail Queue Management Functions ====
#if (defined (osFeature_MailQ) && (osFeature_MailQ != 0)) // Mail Queues available
/// \brief Create a Mail Queue Definition.
/// \param name name of the queue
/// \param queue_sz maximum number of messages in queue
/// \param type data type of a single message element
/// \note CAN BE CHANGED: The parameter to \b osMailQDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osMailQDef(name, queue_sz, type) \
extern const osMailQDef_t os_mailQ_def_##name
#else // define the object
#define osMailQDef(name, queue_sz, type) \
const osMailQDef_t os_mailQ_def_##name = \
{ (queue_sz), sizeof (type) }
#endif
/// \brief Access a Mail Queue Definition.
/// \param name name of the queue
/// \note CAN BE CHANGED: The parameter to \b osMailQ shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osMailQ(name) \
&os_mailQ_def_##name
/// Create and Initialize mail queue.
/// \param[in] queue_def reference to the mail queue definition obtain with \ref osMailQ
/// \param[in] thread_id thread ID (obtained by \ref osThreadCreate or \ref osThreadGetId) or NULL.
/// \return mail queue ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMailCreate shall be consistent in every CMSIS-RTOS.
osMailQId osMailCreate (const osMailQDef_t *queue_def, osThreadId thread_id);
/// Allocate a memory block from a mail.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] millisec \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out
/// \return pointer to memory block that can be filled with mail or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMailAlloc shall be consistent in every CMSIS-RTOS.
void *osMailAlloc (osMailQId queue_id, uint32_t millisec);
/// Allocate a memory block from a mail and set memory block to zero.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] millisec \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out
/// \return pointer to memory block that can be filled with mail or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMailCAlloc shall be consistent in every CMSIS-RTOS.
void *osMailCAlloc (osMailQId queue_id, uint32_t millisec);
/// Put a mail to a queue.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] mail memory block previously allocated with \ref osMailAlloc or \ref osMailCAlloc.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMailPut shall be consistent in every CMSIS-RTOS.
osStatus osMailPut (osMailQId queue_id, void *mail);
/// Get a mail from a queue.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] millisec \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out
/// \return event that contains mail information or error code.
/// \note MUST REMAIN UNCHANGED: \b osMailGet shall be consistent in every CMSIS-RTOS.
osEvent osMailGet (osMailQId queue_id, uint32_t millisec);
/// Free a memory block from a mail.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] mail pointer to the memory block that was obtained with \ref osMailGet.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMailFree shall be consistent in every CMSIS-RTOS.
osStatus osMailFree (osMailQId queue_id, void *mail);
#endif // Mail Queues available
#ifdef __cplusplus
}
#endif
#endif // _CMSIS_OS_H

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,57 @@
/**
******************************************************************************
* @file stm32_assert.h
* @author MCD Application Team
* @brief STM32 assert template file.
* This file should be copied to the application folder and renamed
* to stm32_assert.h.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32_ASSERT_H
#define __STM32_ASSERT_H
#ifdef __cplusplus
extern "C" {
#endif
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/* Includes ------------------------------------------------------------------*/
/* Exported macro ------------------------------------------------------------*/
#ifdef USE_FULL_ASSERT
/**
* @brief The assert_param macro is used for function's parameters check.
* @param expr If expr is false, it calls assert_failed function
* which reports the name of the source file and the source
* line number of the call that failed.
* If expr is true, it returns no value.
* @retval None
*/
#define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__))
/* Exported functions ------------------------------------------------------- */
void assert_failed(uint8_t* file, uint32_t line);
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
#ifdef __cplusplus
}
#endif
#endif /* __STM32_ASSERT_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

Some files were not shown because too many files have changed in this diff Show More