NGFlowCal--C/FlowCal.c

502 lines
14 KiB
C
Raw Permalink Normal View History

//
// Created by ldeyu on 2025/7/7.
//
#include "NGCal.h"
#include "FlowCal.h"
#include "math.h"
double format_double(double value, int digits) {
// 处理默认位数4位
if (digits == 0) {
digits = 4;
}
// 验证位数有效性
if (digits < 1 || digits > 5) {
fprintf(stderr, "Error: Invalid digit value (must be 1-5 or 0 for default)\n");
return NAN; // 返回 NaN 表示错误
}
char format_str[10];
char buffer[50];
// 生成动态格式字符串(如 "%.4f"
snprintf(format_str, sizeof(format_str), "%%.%df", digits);
// 格式化数值到字符串
snprintf(buffer, sizeof(buffer), format_str, value);
// 转换回 double
double result = strtod(buffer, NULL);
return result;
}
void OFlowCal(FlowParSTRUCT *ptFlowPar, NGParSTRUCT *ptNGPar) {
double tempPatm = ptFlowPar->dPatm * 1000000;
double tempPf = ptFlowPar->dPf * 1000000;
double tempDP = ptFlowPar->dDp * 1000;
double tempTf = ptFlowPar->dTf + 273.15;
if (ptFlowPar->dPfType == 0) {
ptFlowPar->dPf = tempPatm + tempPf;
ptNGPar->dPf = tempPatm + tempPf;
} else {
ptFlowPar->dPf = tempPf;
ptNGPar->dPf = tempPf;
}
ptFlowPar->dDp = tempDP;
ptFlowPar->dTf = tempTf;
ptNGPar->dTf = tempTf;
ptNGPar->dCbtj = ptFlowPar->dCbtj;
switch (ptNGPar->dCbtj) {
case 2:
ptNGPar->dPb = 101325;
ptNGPar->dTb = 273.15;
ptFlowPar->dPb_M = (101325);
ptFlowPar->dTb_M = (273.15);
break;
case 1:
ptNGPar->dPb = (101325);
ptNGPar->dTb = (288.15);
ptFlowPar->dPb_M = (101325);
ptFlowPar->dTb_M = (288.15);
break;
case 0:
ptNGPar->dPb = (101325);
ptNGPar->dTb = (293.15);
ptFlowPar->dPb_M = (101325);
ptFlowPar->dTb_M = (293.15);
break;
default: ;
}
double ngArray[NUMBEROFCOMPONENTS];
for (int i = 0; i < NUMBEROFCOMPONENTS; i++) {
ngArray[i] = ptFlowPar->dNG_Compents[i] / 100;
ptNGPar->adMixture[i] = ngArray[i];
}
Crit(ptNGPar, 0);
ptFlowPar->dFpv = format_double(ptNGPar->dFpv, 4);
ptFlowPar->dOrificeD = format_double(ptFlowPar->dOrificeD * (
1 + 0.000001 * CaiLiaoPzxs(ptFlowPar->dOrificeMaterial) * (
ptFlowPar->dTf - 293.15)), 2);
ptFlowPar->dPipeD = format_double(ptFlowPar->dPipeD * (1 + 0.000001 * CaiLiaoPzxs(ptFlowPar->dPipeMaterial) * (
ptFlowPar->dTf - 293.15)), 2);
ptFlowPar->dBeta = format_double(ptFlowPar->dOrificeD / ptFlowPar->dPipeD, 4);
ptFlowPar->dE = format_double(calculateE(ptFlowPar->dBeta), 4);
ptFlowPar->dFG = format_double(calculateFG(ptNGPar->dRD_Real), 4);
ptFlowPar->dFT = format_double(calculateFT(ptFlowPar->dTb_M, ptFlowPar->dTf), 4);
ptFlowPar->dKappa = format_double(calculateKappa(ptNGPar->dZf), 4);
ptFlowPar->dDViscosity = format_double(Dlndjs(ptFlowPar->dPf / 1e6, ptFlowPar->dTf), 5);
ptFlowPar->dDExpCoefficient = format_double(calculateEpsilon(ptFlowPar->dPf, ptFlowPar->dDp,
ptFlowPar->dBeta, ptFlowPar->dKappa), 4);
double D = ptFlowPar->dPipeD / 1000.0;
double d = ptFlowPar->dOrificeD / 1000.0;
double beta = ptFlowPar->dBeta;
double P1 = ptFlowPar->dPf;
double deltaP = ptFlowPar->dDp;
double Tf = ptFlowPar->dTf;
double C_initial = 0.6;
double Qf_initial = (C_initial * ptFlowPar->dE * ptFlowPar->dDExpCoefficient * M_PI * pow(d, 2) / 4)
* sqrt(2 * deltaP / (ptNGPar->dRhof * (1 - pow(beta, 4))));
ptFlowPar->dVFlowf = Qf_initial;
double tolerance = 1e-6;
double currentC = C_initial;
double currentReD = calculateReD(Qf_initial, D, ptNGPar->dRhof, ptFlowPar->dDViscosity);
int iter = 0;
double prevC = 0;
do {
int maxIter = 100;
prevC = currentC;
currentC = calculateCd(beta, currentReD, ptFlowPar->dPipeD, ptFlowPar->dPtmode);
double Qf = (currentC * ptFlowPar->dDExpCoefficient * M_PI * pow(d, 2) / 4)
* sqrt(2 * deltaP / (ptNGPar->dRhof * (1 - pow(beta, 4))));
ptFlowPar->dVFlowf = Qf;
currentReD = calculateReD(Qf, D, ptNGPar->dRhof, ptFlowPar->dDViscosity);
iter++;
if (iter > maxIter) {
fprintf(stderr, "\n");
}
} while (fabs(currentC - prevC) / currentC > tolerance);
double K = calculateK(ptFlowPar->dPipeType);
double G_me = calculateRoughnessFactor(ptFlowPar->dPipeD, K, currentC);
double C_corrected = currentC * G_me;
ptFlowPar->dCd = C_corrected;
ptFlowPar->dRoughNessPipe = G_me;
ptFlowPar->dRnPipe = currentReD;
double Qn = ptFlowPar->dVFlowf * (ptFlowPar->dFpv * ptFlowPar->dFpv * P1 / ptFlowPar->dPb_M)
* (ptFlowPar->dTb_M) / Tf;
ptFlowPar->dVFlowb = Qn;
ptFlowPar->dMFlowb = ptFlowPar->dVFlowb * ptNGPar->dRhob;
ptFlowPar->dEFlowb = ptFlowPar->dVFlowb * ptNGPar->dHhvMol * ptFlowPar->dPb_M * 1e-6 / RGASKJ / ptFlowPar->dTb_M;
ptFlowPar->dVelocityFlow = ptFlowPar->dVFlowf / (M_PI * pow((ptFlowPar->dPipeD / 2000), 2));
}
double CaiLiaoPzxs(const int tempCaiLiao) {
double CaiLiaoPzxs = 0;
switch (tempCaiLiao) {
case 0:
CaiLiaoPzxs = 11.75;
break;
case 1:
CaiLiaoPzxs = 11.6;
break;
case 2:
CaiLiaoPzxs = 11.16;
break;
case 3:
CaiLiaoPzxs = 11.59;
break;
case 4:
CaiLiaoPzxs = 10.5;
break;
case 5:
CaiLiaoPzxs = 10.0;
break;
case 6:
CaiLiaoPzxs = 10.2;
break;
case 7:
CaiLiaoPzxs = 15.5;
break;
case 8:
CaiLiaoPzxs = 11.5;
break;
case 9:
CaiLiaoPzxs = 10.8;
break;
case 10:
CaiLiaoPzxs = 16.6;
break;
case 11:
CaiLiaoPzxs = 11.4;
break;
case 12:
CaiLiaoPzxs = 16.55;
break;
case 13:
CaiLiaoPzxs = 17.8;
break;
case 14:
CaiLiaoPzxs = 17.2;
break;
default: ;
}
return CaiLiaoPzxs;
}
double calculateK(int dPipeType) {
double Jdccd;
switch (dPipeType) {
case 0:
Jdccd = 0.029;
break;
case 1:
case 2:
case 3:
Jdccd = 0.075;
break;
case 4:
Jdccd = 0.1;
break;
case 5:
Jdccd = 0.15;
break;
case 6:
Jdccd = 1;
break;
case 7:
Jdccd = 2.1;
break;
case 8:
Jdccd = 0.04;
break;
case 9:
Jdccd = 0.15;
break;
case 10:
Jdccd = 0.13;
break;
case 11:
Jdccd = 0.25;
break;
default:
fprintf(stderr, "δ֪<EFBFBD>Ĺܵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>: %d\n", dPipeType);
return FLOW_CALC_ERROR;
}
return Jdccd;
}
double calculateRoughnessFactor(double D_pipe, double K, double C) {
double K_over_D = K / D_pipe;
if (K_over_D <= 0.0004) {
return 1.0000;
}
double term = (K_over_D * 1e6) - 400;
if (term < 0) {
fprintf(
stderr,
"K/D <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><CABD><EFBFBD>÷<EFBFBD>Χ\n");
return FLOW_CALC_ERROR;
}
double G_me = 1 + (0.011 / C) * sqrt(term);
return G_me;
}
double calculateE(double beta) {
return 1 / sqrt(1 - pow(beta, 4));
}
double calculateFG(double dRD_Real) {
return 1 / sqrt(dRD_Real);
}
double calculateFT(double dTb_M, double dTf) {
return sqrt(dTb_M / dTf);
}
double calculateEpsilon(double dPf, double dDp, double beta, double dKappa) {
double tau = (dPf - dDp) / dPf;
double epsilon = 1 - (0.351 + 0.256 * pow(beta, 4) + 0.93 * pow(beta, 8)) * (1 - pow(tau, 1 / dKappa));
return epsilon;
}
double calculateKappa(double dZf) {
double gamma = 1.3;
double Z = dZf;
double kappa = gamma / (1 - (gamma - 1) * (1 / Z - 1));
return kappa;
}
double calculateReD(double Qf, double D, double rho, double mu) {
return (4 * Qf * rho * 1000) / (M_PI * D * mu);
}
double calculateCd(double beta, double ReD, double D_mm, int ptMode) {
double L1, L2;
switch (ptMode) {
case 1:
L1 = L2 = 0;
break;
case 0:
L1 = L2 = 25.4 / D_mm;
break;
case 2:
L1 = 1.0;
L2 = 0.47;
break;
default:
fprintf(stderr, "<EFBFBD><EFBFBD>֧<EFBFBD>ֵ<EFBFBD>ȡѹ<EFBFBD><EFBFBD>ʽ: %d\n", ptMode);
return FLOW_CALC_ERROR;
}
double term1 = 0.5961 + 0.0261 * pow(beta, 2) - 0.216 * pow(beta, 8);
double term2 = 0.000521 * pow(1e6 * beta / ReD, 0.7);
double A = pow(19000 * beta / ReD, 0.8);
double term3 = (0.0188 + 0.0063 * A) * pow(beta, 3.5) * pow(1e6 / ReD, 0.3);
double term4 = (0.043 + 0.08 * exp(-10 * L1) - 0.123 * exp(-7 * L1))
* (1 - 0.11 * A) * pow(beta, 4) / (1 - pow(beta, 4));
double term5 = -0.031 * (2 * L2 / (1 - beta) - 0.8 * pow(2 * L2 / (1 - beta), 1.1))
* pow(beta, 1.3);
double Cd = term1 + term2 + term3 + term4 + term5;
if (D_mm < 71.12) {
Cd += 0.011 * (0.75 - beta) * (2.8 - D_mm / 25.4);
}
return Cd;
}
double Dlndjs(double tempP_jy, double tempT) {
double Dlndjs_Dlnd_Data[8][11] = {
{976, 991, 1014, 1044, 1073, 1114, 1156, 1207, 1261, 1331, 1405},
{1027, 1040, 1063, 1091, 1118, 1151, 1185, 1230, 1276, 1331, 1389},
{1071, 1082, 1106, 1127, 1149, 1180, 1211, 1250, 1289, 1335, 1383},
{1123, 1135, 1153, 1174, 1195, 1224, 1253, 1289, 1324, 1366, 1409},
{1167, 1178, 1196, 1216, 1236, 1261, 1287, 1318, 1350, 1385, 1421},
{1213, 1224, 1239, 1257, 1275, 1297, 1320, 1346, 1373, 1403, 1435},
{1260, 1270, 1281, 1297, 1313, 1333, 1352, 1374, 1396, 1424, 1451},
{1303, 1312, 1323, 1338, 1352, 1372, 1391, 1412, 1432, 1456, 1482}
};
double Dlndjs_Dlnd_T[8] = {
-15 + 273.15, 0 + 273.15, 15 + 273.15, 30 + 273.15,
45 + 273.15, 60 + 273.15, 75 + 273.15, 90 + 273.15
};
double Dlndjs_Dlnd_P[11] = {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
double ky, kx;
int i, m = 0, n = 0;
if (tempT < Dlndjs_Dlnd_T[0]) {
tempT = Dlndjs_Dlnd_T[0];
}
if (tempT > Dlndjs_Dlnd_T[7]) {
tempT = Dlndjs_Dlnd_T[7];
}
if (tempP_jy < Dlndjs_Dlnd_P[0]) {
tempP_jy = Dlndjs_Dlnd_P[0];
}
if (tempP_jy > Dlndjs_Dlnd_P[10]) {
tempP_jy = Dlndjs_Dlnd_P[10];
}
for (i = 0; i <= 6; i++) {
if (tempT >= Dlndjs_Dlnd_T[i] && tempT <= Dlndjs_Dlnd_T[i + 1]) {
m = i;
break;
}
}
for (i = 0; i <= 9; i++) {
if (tempP_jy >= Dlndjs_Dlnd_P[i] && tempP_jy <= Dlndjs_Dlnd_P[i + 1]) {
n = i;
break;
}
}
if (Dlndjs_Dlnd_P[n + 1] - Dlndjs_Dlnd_P[n] != 0) {
ky = (tempP_jy - Dlndjs_Dlnd_P[n]) / (Dlndjs_Dlnd_P[n + 1] - Dlndjs_Dlnd_P[n]);
} else {
ky = 0;
}
if (Dlndjs_Dlnd_T[m + 1] - Dlndjs_Dlnd_T[m] != 0) {
kx = (tempT - Dlndjs_Dlnd_T[m]) / (Dlndjs_Dlnd_T[m + 1] - Dlndjs_Dlnd_T[m]);
} else {
kx = 0;
}
double s1 = Dlndjs_Dlnd_Data[m][n] + (Dlndjs_Dlnd_Data[m][n + 1] - Dlndjs_Dlnd_Data[m][n]) * ky;
double s2 = Dlndjs_Dlnd_Data[m + 1][n] + (Dlndjs_Dlnd_Data[m + 1][n + 1] - Dlndjs_Dlnd_Data[m + 1][n]) * ky;
return (s1 + (s2 - s1) * kx) / 100000.0;
}
// 压力损失计算
double YaLiSunShi(double tempLiuChuXiShu, double tempZjb, double tempDp, int JieLiuZhuangZhi) {
double ylss = 0;
switch (JieLiuZhuangZhi) {
case 0:
case 1:
case 2:
ylss = tempDp * (sqrt(1 - tempZjb) - tempLiuChuXiShu * pow(tempZjb, 2))
/ (sqrt(1 - tempZjb) + tempLiuChuXiShu * pow(tempZjb, 2));
break;
default: ;
}
return ylss;
}
// 标况转工况流量转换
double FlowConvert_BaseToWork(double Pf, double Tf, double Zb, double Zf, double FlowBase, int Cbtj) {
double tempPn = 0;
double tempTn = 0;
switch (Cbtj) {
case 2:
tempPn = 101325;
tempTn = 273.15;
break;
case 1:
tempPn = 101325;
tempTn = 288.15;
break;
case 0:
tempPn = 101325;
tempTn = 293.15;
break;
case 3:
tempPn = 10155981;
tempTn = 288.7055555;
break;
default: ;
}
return FlowBase * tempPn * Tf * Zf / Pf / tempTn / Zb;
}
// 工况转标况流量转换
double FlowConvert_WorkToBase(double Pf, double Tf, double Zb, double Zf, double FlowWork, int Cbtj) {
double tempPn = 0;
double tempTn = 0;
switch (Cbtj) {
case 2:
tempPn = 101325;
tempTn = 273.15;
break;
case 1:
tempPn = 101325;
tempTn = 288.15;
break;
case 0:
tempPn = 101325;
tempTn = 293.15;
break;
case 3:
tempPn = 10155981;
tempTn = 288.7055555;
break;
default: ;
}
return FlowWork * Pf * tempTn * Zb / tempPn / Tf / Zf;
}