1401 lines
46 KiB
C
1401 lines
46 KiB
C
/*************************************************************************
|
||
* 文件: detail.c
|
||
* 描述: 该文件包含实现AGA报告No.8 1994 - 详细方法的函数,以及AGA报告No.10所需的新特性
|
||
* 包含以下函数:
|
||
* Detail(), ~Detail(), compositionchange(), Run(), table(), * paramdl(), chardl(), braket(), bvir(), temp(), ddetail(), * pdetail(), zdetail(), relativedensity(), dZdT(), d2ZdT2(), * dZdD()
|
||
* 版本: ver 1.7 2002.11.17
|
||
* 作者: W.B. Peterson
|
||
* 修订:
|
||
* 版权: (c) 2002 美国天然气协会
|
||
**************************************************************************/
|
||
|
||
#include "NGCal.h"
|
||
#include "Detail.h"
|
||
#include <math.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::Detail()
|
||
* 参数: void
|
||
* 返回:
|
||
* 目的: 默认构造函数; 包括初始化历史敏感变量和数据表4和6
|
||
* 修订:
|
||
**************************************************************************/
|
||
Detail* Detail_Construct(void)
|
||
{
|
||
Detail* pDetail = (Detail*)malloc(sizeof(Detail));
|
||
if (!pDetail) return NULL;
|
||
|
||
memset(pDetail, 0, sizeof(Detail));
|
||
|
||
// 初始化历史敏感变量
|
||
pDetail->dOldMixID = 0.0;
|
||
pDetail->dOldPb = 0.0;
|
||
pDetail->dOldTb = 0.0;
|
||
pDetail->dOldPf = 0.0;
|
||
pDetail->dOldTf = 0.0;
|
||
|
||
// 初始化该类内部使用的气体组分数组
|
||
for (int i = 0; i < NUMBEROFCOMPONENTS; i++)
|
||
pDetail->dXi[i] = 0;
|
||
|
||
// 函数table()填充静态常量表
|
||
Detail_table(pDetail);
|
||
return pDetail;
|
||
}
|
||
|
||
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::compositionchange()
|
||
* 参数: AGA10STRUCT *
|
||
* 返回: void
|
||
* 目的: 通过创建半唯一数值ID比较新组成与旧组成。虽然可能性很小,但两个连续不同的组成可能产生相同的ID
|
||
* 修订:
|
||
**************************************************************************/
|
||
int Detail_compositionchange(Detail* pDetail, AGA10STRUCT *ptAGA10)
|
||
{
|
||
double dMixID = 0.0;
|
||
int i;
|
||
|
||
// 为组成生成数值ID
|
||
for (i = 0; i < NUMBEROFCOMPONENTS; i++)
|
||
dMixID += ((i+2) * ptAGA10->adMixture[i]);
|
||
|
||
// 如果与之前不同,则更新历史变量
|
||
if (dMixID != pDetail->dOldMixID)
|
||
{
|
||
pDetail->dOldMixID = dMixID;
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::Run()
|
||
* 参数: AGA10STRUCT *
|
||
* 返回: void
|
||
* 目的: 公共方法,用于协调和运行完整的计算序列
|
||
* 修订:
|
||
**************************************************************************/
|
||
void Detail_Run(Detail* pDetail, AGA10STRUCT *ptAGA10)
|
||
{
|
||
int i;
|
||
|
||
// 检查气体组成变化
|
||
bool bCompChange = Detail_compositionchange(pDetail, ptAGA10);
|
||
ptAGA10->bForceUpdate = ptAGA10->bForceUpdate || bCompChange;
|
||
|
||
// 分配组分ID和值
|
||
if (ptAGA10->bForceUpdate)
|
||
{
|
||
pDetail->iNCC = 0;
|
||
for (i = 0; i < NUMBEROFCOMPONENTS; i++)
|
||
{
|
||
if (ptAGA10->adMixture[i] > 0.0)
|
||
{
|
||
pDetail->aiCID[pDetail->iNCC] = i;
|
||
pDetail->dXi[pDetail->iNCC] = ptAGA10->adMixture[i];
|
||
pDetail->iNCC++;
|
||
}
|
||
}
|
||
|
||
// 计算组成相关量
|
||
Detail_paramdl(pDetail);
|
||
Detail_chardl(pDetail, ptAGA10);
|
||
}
|
||
|
||
// 在基础压力和温度下评估T和P相关参数
|
||
if ((fabs(ptAGA10->dPb - pDetail->dOldPb) > P_CHG_TOL) ||
|
||
(fabs(ptAGA10->dTb - pDetail->dOldTb) > T_CHG_TOL) ||
|
||
(ptAGA10->bForceUpdate))
|
||
{
|
||
pDetail->dP = ptAGA10->dPb * 1.0e-6; // AGA 8内部使用MPa
|
||
pDetail->dT = ptAGA10->dTb;
|
||
|
||
// 计算温度相关参数
|
||
Detail_temp(pDetail);
|
||
|
||
// 确定摩尔密度
|
||
Detail_ddetail(pDetail, ptAGA10);
|
||
ptAGA10->dDb = pDetail->dRho;
|
||
|
||
// 确定压缩系数
|
||
ptAGA10->dZb = Detail_zdetail(pDetail, pDetail->dRho);
|
||
|
||
// 计算质量密度
|
||
pDetail->dRhoTP = (pDetail->dP * ptAGA10->dMrx) / (ptAGA10->dZb * RGASKJ * pDetail->dT);
|
||
|
||
// 计算相对密度
|
||
Detail_relativedensity(pDetail, ptAGA10);
|
||
|
||
// 将密度复制到数据结构成员
|
||
ptAGA10->dRhob = pDetail->dRhoTP;
|
||
|
||
// 更新历史并清除ForceUpdate标志
|
||
pDetail->dOldTb = ptAGA10->dTb;
|
||
pDetail->dOldPb = ptAGA10->dPb;
|
||
ptAGA10->bForceUpdate = true;
|
||
}
|
||
|
||
// 使用流动条件重复该过程
|
||
pDetail->dP = ptAGA10->dPf * 1.0e-6;
|
||
pDetail->dT = ptAGA10->dTf;
|
||
|
||
// 检查是否需要计算温度相关参数
|
||
if ((fabs(ptAGA10->dTf - pDetail->dOldTf) > T_CHG_TOL) || (ptAGA10->bForceUpdate))
|
||
{
|
||
Detail_temp(pDetail);
|
||
ptAGA10->bForceUpdate = true;
|
||
}
|
||
|
||
// 检查是否需要计算其他参数
|
||
if ((fabs(ptAGA10->dPf - pDetail->dOldPf) > P_CHG_TOL) || (ptAGA10->bForceUpdate))
|
||
{
|
||
// 确定摩尔密度
|
||
Detail_ddetail(pDetail, ptAGA10);
|
||
ptAGA10->dDf = pDetail->dRho;
|
||
|
||
// 确定压缩系数
|
||
ptAGA10->dZf = Detail_zdetail(pDetail, pDetail->dRho);
|
||
|
||
// 计算质量密度
|
||
pDetail->dRhoTP = (pDetail->dP * ptAGA10->dMrx) / (ptAGA10->dZf * RGASKJ * pDetail->dT);
|
||
ptAGA10->dRhof = pDetail->dRhoTP;
|
||
|
||
// 更新历史
|
||
pDetail->dOldTf = ptAGA10->dTf;
|
||
pDetail->dOldPf = ptAGA10->dPf;
|
||
}
|
||
|
||
// 计算传统因子Fpv
|
||
if ((ptAGA10->dZb > 0.0) && (ptAGA10->dZf > 0.0))
|
||
ptAGA10->dFpv = sqrt(ptAGA10->dZb / ptAGA10->dZf);
|
||
else
|
||
ptAGA10->lStatus = GENERAL_CALCULATION_FAILURE;
|
||
|
||
ptAGA10->bForceUpdate = false;
|
||
}
|
||
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::table()
|
||
* 参数: void
|
||
* 返回: void
|
||
* 目的: 构建常量表
|
||
* 修订:
|
||
**************************************************************************/
|
||
void Detail_table(Detail* pDetail)
|
||
{
|
||
// 表4中的58个常量 - 列A(n)
|
||
const double adAn[58] = {
|
||
0.153832600,1.341953000,-2.998583000,-0.048312280,0.375796500,-1.589575000,-0.053588470,0.886594630,-0.710237040,-1.471722000, 1.321850350, -0.786659250, 2.29129E-09, 0.157672400, -0.436386400, -0.044081590, -0.003433888, 0.032059050, 0.024873550, 0.073322790, -0.001600573, 0.642470600, -0.416260100, -0.066899570, 0.279179500, -0.696605100, -0.002860589, -0.008098836, 3.150547000, 0.007224479, -0.705752900, 0.534979200, -0.079314910, -1.418465000, -5.99905E-17, 0.105840200, 0.034317290, -0.007022847, 0.024955870, 0.042968180, 0.746545300, -0.291961300, 7.294616000, -9.936757000, -0.005399808, -0.243256700, 0.049870160, 0.003733797, 1.874951000, 0.002168144, -0.658716400, 0.000205518, 0.009776195, -0.020487080, 0.015573220, 0.006862415, -0.001226752, 0.002850908 };
|
||
|
||
// 表4中的58个常量 - 列Un
|
||
const double adUn[58] = {0.0,0.5,1.0,3.5,-0.5,4.5,0.5,7.5,9.5,6.0,12.0,12.5,-6.0,2.0,3.0,2.0,2.0,11.0,-0.5,0.5,0.0,4.0,6.0,21.0,23.0,22.0,-1.0,-0.5,7.0,-1.0,6.0,4.0,1.0,9.0,-13.0,21.0,8.0,-0.5,0.0,2.0,7.0,9.0,22.0,23.0,1.0,9.0,3.0,8.0,23.0,1.5,5.0,-0.5,4.0,7.0,3.0,0.0,1.0,0.0
|
||
};
|
||
|
||
memcpy(pDetail->adAn, adAn, sizeof(adAn));
|
||
memcpy(pDetail->adUn, adUn, sizeof(adUn));
|
||
|
||
// 初始化表6为1.0
|
||
for (int j = 0; j < NUMBEROFCOMPONENTS; j++) {
|
||
for (int k = j; k < NUMBEROFCOMPONENTS; k++) {
|
||
pDetail->adTable6Eij[j][k] = 1.0;
|
||
pDetail->adTable6Uij[j][k] = 1.0;
|
||
pDetail->adTable6Kij[j][k] = 1.0;
|
||
pDetail->adTable6Gij[j][k] = 1.0;
|
||
}
|
||
}
|
||
|
||
// 设置表6的非1值
|
||
pDetail->adTable6Eij[0][1] = 0.971640;
|
||
pDetail->adTable6Eij[0][2] = 0.960644;
|
||
pDetail->adTable6Eij[0][4] = 0.994635;
|
||
pDetail->adTable6Eij[0][5] = 0.708218;
|
||
pDetail->adTable6Eij[0][6] = 0.931484;
|
||
pDetail->adTable6Eij[0][7] = 1.170520;
|
||
pDetail->adTable6Eij[0][8] = 0.990126;
|
||
pDetail->adTable6Eij[0][10] = 1.019530;
|
||
pDetail->adTable6Eij[0][11] = 0.989844;
|
||
pDetail->adTable6Eij[0][12] = 1.002350;
|
||
pDetail->adTable6Eij[0][13] = 0.999268;
|
||
pDetail->adTable6Eij[0][14] = 1.107274;
|
||
pDetail->adTable6Eij[0][15] = 0.880880;
|
||
pDetail->adTable6Eij[0][16] = 0.880973;
|
||
pDetail->adTable6Eij[0][17] = 0.881067;
|
||
pDetail->adTable6Eij[0][18] = 0.881161;
|
||
pDetail->adTable6Eij[1][2] = 1.022740;
|
||
pDetail->adTable6Eij[1][3] = 0.970120;
|
||
pDetail->adTable6Eij[1][4] = 0.945939;
|
||
pDetail->adTable6Eij[1][5] = 0.746954;
|
||
pDetail->adTable6Eij[1][6] = 0.902271;
|
||
pDetail->adTable6Eij[1][7] = 1.086320;
|
||
pDetail->adTable6Eij[1][8] = 1.005710;
|
||
pDetail->adTable6Eij[1][9] = 1.021000;
|
||
pDetail->adTable6Eij[1][10] = 0.946914;
|
||
pDetail->adTable6Eij[1][11] = 0.973384;
|
||
pDetail->adTable6Eij[1][12] = 0.959340;
|
||
pDetail->adTable6Eij[1][13] = 0.945520;
|
||
pDetail->adTable6Eij[2][3] = 0.925053;
|
||
pDetail->adTable6Eij[2][4] = 0.960237;
|
||
pDetail->adTable6Eij[2][5] = 0.849408;
|
||
pDetail->adTable6Eij[2][6] = 0.955052;
|
||
pDetail->adTable6Eij[2][7] = 1.281790;
|
||
pDetail->adTable6Eij[2][8] = 1.500000;
|
||
pDetail->adTable6Eij[2][10] = 0.906849;
|
||
pDetail->adTable6Eij[2][11] = 0.897362;
|
||
pDetail->adTable6Eij[2][12] = 0.726255;
|
||
pDetail->adTable6Eij[2][13] = 0.859764;
|
||
pDetail->adTable6Eij[2][14] = 0.855134;
|
||
pDetail->adTable6Eij[2][15] = 0.831229;
|
||
pDetail->adTable6Eij[2][16] = 0.808310;
|
||
pDetail->adTable6Eij[2][17] = 0.786323;
|
||
pDetail->adTable6Eij[2][18] = 0.765171;
|
||
pDetail->adTable6Eij[3][4] = 1.022560;
|
||
pDetail->adTable6Eij[3][5] = 0.693168;
|
||
pDetail->adTable6Eij[3][6] = 0.946871;
|
||
pDetail->adTable6Eij[3][7] = 1.164460;
|
||
pDetail->adTable6Eij[3][11] = 1.013060;
|
||
pDetail->adTable6Eij[3][13] = 1.005320;
|
||
pDetail->adTable6Eij[4][7] = 1.034787;
|
||
pDetail->adTable6Eij[4][11] = 1.004900;
|
||
pDetail->adTable6Eij[6][14] = 1.008692;
|
||
pDetail->adTable6Eij[6][15] = 1.010126;
|
||
pDetail->adTable6Eij[6][16] = 1.011501;
|
||
pDetail->adTable6Eij[6][17] = 1.012821;
|
||
pDetail->adTable6Eij[6][18] = 1.014089;
|
||
pDetail->adTable6Eij[7][8] = 1.100000;
|
||
pDetail->adTable6Eij[7][10] = 1.300000;
|
||
pDetail->adTable6Eij[7][11] = 1.300000;
|
||
pDetail->adTable6Uij[0][1] = 0.886106;
|
||
pDetail->adTable6Uij[0][2] = 0.963827;
|
||
pDetail->adTable6Uij[0][4] = 0.990877;
|
||
pDetail->adTable6Uij[0][6] = 0.736833;
|
||
pDetail->adTable6Uij[0][7] = 1.156390;
|
||
pDetail->adTable6Uij[0][11] = 0.992291;
|
||
pDetail->adTable6Uij[0][13] = 1.003670;
|
||
pDetail->adTable6Uij[0][14] = 1.302576;
|
||
pDetail->adTable6Uij[0][15] = 1.191904;
|
||
pDetail->adTable6Uij[0][16] = 1.205769;
|
||
pDetail->adTable6Uij[0][17] = 1.219634;
|
||
pDetail->adTable6Uij[0][18] = 1.233498;
|
||
pDetail->adTable6Uij[1][2] = 0.835058;
|
||
pDetail->adTable6Uij[1][3] = 0.816431;
|
||
pDetail->adTable6Uij[1][4] = 0.915502;
|
||
pDetail->adTable6Uij[1][6] = 0.993476;
|
||
pDetail->adTable6Uij[1][7] = 0.408838;
|
||
pDetail->adTable6Uij[1][11] = 0.993556;
|
||
pDetail->adTable6Uij[2][3] = 0.969870;
|
||
pDetail->adTable6Uij[2][6] = 1.045290;
|
||
pDetail->adTable6Uij[2][8] = 0.900000;
|
||
pDetail->adTable6Uij[2][14] = 1.066638;
|
||
pDetail->adTable6Uij[2][15] = 1.077634;
|
||
pDetail->adTable6Uij[2][16] = 1.088178;
|
||
pDetail->adTable6Uij[2][17] = 1.098291;
|
||
pDetail->adTable6Uij[2][18] = 1.108021;
|
||
pDetail->adTable6Uij[3][4] = 1.065173;
|
||
pDetail->adTable6Uij[3][6] = 0.971926;
|
||
pDetail->adTable6Uij[3][7] = 1.616660;
|
||
pDetail->adTable6Uij[3][10] = 1.250000;
|
||
pDetail->adTable6Uij[3][11] = 1.250000;
|
||
pDetail->adTable6Uij[3][12] = 1.250000;
|
||
pDetail->adTable6Uij[3][13] = 1.250000;
|
||
pDetail->adTable6Uij[6][14] = 1.028973;
|
||
pDetail->adTable6Uij[6][15] = 1.033754;
|
||
pDetail->adTable6Uij[6][16] = 1.038338;
|
||
pDetail->adTable6Uij[6][17] = 1.042735;
|
||
pDetail->adTable6Uij[6][18] = 1.046966;
|
||
pDetail->adTable6Kij[0][1] = 1.003630;
|
||
pDetail->adTable6Kij[0][2] = 0.995933;
|
||
pDetail->adTable6Kij[0][4] = 1.007619;
|
||
pDetail->adTable6Kij[0][6] = 1.000080;
|
||
pDetail->adTable6Kij[0][7] = 1.023260;
|
||
pDetail->adTable6Kij[0][11] = 0.997596;
|
||
pDetail->adTable6Kij[0][13] = 1.002529;
|
||
pDetail->adTable6Kij[0][14] = 0.982962;
|
||
pDetail->adTable6Kij[0][15] = 0.983565;
|
||
pDetail->adTable6Kij[0][16] = 0.982707;
|
||
pDetail->adTable6Kij[0][17] = 0.981849;
|
||
pDetail->adTable6Kij[0][18] = 0.980991;
|
||
pDetail->adTable6Kij[1][2] = 0.982361;
|
||
pDetail->adTable6Kij[1][3] = 1.007960;
|
||
pDetail->adTable6Kij[1][6] = 0.942596;
|
||
pDetail->adTable6Kij[1][7] = 1.032270;
|
||
pDetail->adTable6Kij[2][3] = 1.008510;
|
||
pDetail->adTable6Kij[2][6] = 1.007790;
|
||
pDetail->adTable6Kij[2][14] = 0.910183;
|
||
pDetail->adTable6Kij[2][15] = 0.895362;
|
||
pDetail->adTable6Kij[2][16] = 0.881152;
|
||
pDetail->adTable6Kij[2][17] = 0.867520;
|
||
pDetail->adTable6Kij[2][18] = 0.854406;
|
||
pDetail->adTable6Kij[3][4] = 0.986893;
|
||
pDetail->adTable6Kij[3][6] = 0.999969;
|
||
pDetail->adTable6Kij[3][7] = 1.020340;
|
||
pDetail->adTable6Kij[6][14] = 0.968130;
|
||
pDetail->adTable6Kij[6][15] = 0.962870;
|
||
pDetail->adTable6Kij[6][16] = 0.957828;
|
||
pDetail->adTable6Kij[6][17] = 0.952441;
|
||
pDetail->adTable6Kij[6][18] = 0.948338;
|
||
pDetail->adTable6Gij[0][2] = 0.807653;
|
||
pDetail->adTable6Gij[0][7] = 1.957310;
|
||
pDetail->adTable6Gij[1][2] = 0.982746;
|
||
pDetail->adTable6Gij[2][3] = 0.370296;
|
||
pDetail->adTable6Gij[2][5] = 1.673090;
|
||
|
||
|
||
/* GB/T11062 的高位发热量分组分数据*/
|
||
|
||
// 初始化高热值数组
|
||
double adTableHhvMol[4][NUMBEROFCOMPONENTS] = {
|
||
{892.97,0,0,1564.34,2224.01,45.074,562.94,286.63,282.8,0,2874.2,2883.82,3535.98,3542.89,4203.23,4862.87,5522.4,6182.91,6842.69,0,0}, {891.56,0,0,1562.14,2221.1,44.433,562.38,286.15,282.91,0,2870.58,2879.76,3531.68,3538.6,4198.24,4857.18,5516.01,6175.82,6834.9,0,0}, {891.09,0,0,1561.41,2220.13,44.224,562.19,285.99,282.95,0,2869.38,2878.57,3530.24,3537.17,4196.58,4855.29,5513.88,6173.46,6832.31,0,0}, {890.63,0,0,1560.69,2219.17,44.016,562.01,285.83,282.98,0,2868.2,2877.4,3528.83,3535.77,4194.95,4853.43,5511.8,6171.15,6829.77,0,0}
|
||
};
|
||
|
||
// 复制到结构体成员
|
||
memcpy(pDetail->adTableHhvMol, adTableHhvMol, sizeof(adTableHhvMol));
|
||
|
||
// 初始化低热值数组
|
||
double adTableLhvMol[4][NUMBEROFCOMPONENTS] = {
|
||
{802.82,0,0,1429.12,2043.71,0,517.87,241.56,282.8,0,2648.83,2658.45,3265.54,3272.45,3887.71,4502.28,5116.73,5732.17,6346.88,0,0}, {802.69,0,0,1428.84,2043.37,0,517.95,241.72,282.91,0,2648.42,2657.6,3265.08,3272,3887.21,4501.72,5116.11,5731.49,6346.14,0,0}, {802.65,0,0,1428.74,2043.23,0,517.97,241.76,282.95,0,2648.26,2657.45,3264.89,3271.83,3887.01,4501.49,5115.87,5731.22,6345.85,0,0}, {802.6,0,0,1428.64,2043.11,0,517.99,241.81,282.98,0,2648.12,2657.32,3264.73,3271.67,3886.84,4501.3,5115.66,5730.99,6345.59,0,0}
|
||
};
|
||
|
||
// 复制到结构体成员
|
||
memcpy(pDetail->adTableLhvMol, adTableLhvMol, sizeof(adTableLhvMol));
|
||
|
||
}
|
||
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::paramdl()
|
||
* 参数: void
|
||
* 返回: void
|
||
* 目的: 设置特性和二元交互参数
|
||
* 修订:
|
||
**************************************************************************/
|
||
void Detail_paramdl(Detail* pDetail)
|
||
{
|
||
// 表5参数
|
||
const double adTable5Mri[21] = {
|
||
16.0430, 28.0135, 44.0100, 30.0700, 44.0970, 18.0153, 34.0820, 2.0159, 28.0100, 31.9988, 58.1230, 58.1230, 72.1500, 72.1500, 86.1770, 100.2040,114.2310,128.2580,142.2850,4.0026, 39.9480
|
||
};
|
||
|
||
const double adTable5Ei[21] = {151.318300, 99.737780, 241.960600, 244.166700, 298.118300, 514.015600, 296.355000, 26.957940, 105.534800, 122.766700, 324.068900, 337.638900, 365.599900, 370.682300, 402.636293, 427.722630, 450.325022, 470.840891, 489.558373, 2.610111, 119.629900
|
||
};
|
||
|
||
const double adTable5Ki[21] = {0.4619255, 0.4479153, 0.4557489, 0.5279209, 0.5837490, 0.3825868, 0.4618263, 0.3514916, 0.4533894, 0.4186954, 0.6406937, 0.6341423, 0.6738577, 0.6798307, 0.7175118, 0.7525189, 0.7849550, 0.8152731, 0.8437826, 0.3589888, 0.4216551
|
||
};
|
||
|
||
const double adTable5Gi[21] = {0.000000,0.027815,0.189065,0.079300,0.141239, 0.332500,0.088500,0.034369,0.038953,0.021000, 0.256692,0.281835,0.332267,0.366911,0.289731, 0.337542,0.383381,0.427354,0.469659,0.000000, 0.000000
|
||
};
|
||
|
||
// 初始化表5参数为零
|
||
for (int j = 0; j < NUMBEROFCOMPONENTS; j++) {
|
||
pDetail->adTable5Qi[j] = 0.0;
|
||
pDetail->adTable5Fi[j] = 0.0;
|
||
pDetail->adTable5Si[j] = 0.0;
|
||
pDetail->adTable5Wi[j] = 0.0;
|
||
}
|
||
|
||
// 设置例外值
|
||
pDetail->adTable5Qi[2] = 0.690000;
|
||
pDetail->adTable5Qi[5] = 1.067750;
|
||
pDetail->adTable5Qi[6] = 0.633276;
|
||
pDetail->adTable5Fi[7] = 1.0000;
|
||
pDetail->adTable5Si[5] = 1.5822;
|
||
pDetail->adTable5Si[6] = 0.3900;
|
||
pDetail->adTable5Wi[5] = 1.0000;
|
||
|
||
// 为非零组分设置特性参数
|
||
for (int j= pDetail->iNCC-1; j >= 0; j--)
|
||
{
|
||
pDetail->dMri[j] = adTable5Mri[ pDetail->aiCID[j]];
|
||
pDetail->dKi[j] = adTable5Ki[ pDetail->aiCID[j]];
|
||
}
|
||
|
||
for (int j=0; j < pDetail->iNCC; j++)
|
||
{
|
||
pDetail->dGi[j] = adTable5Gi[ pDetail->aiCID[j]];
|
||
pDetail->dEi[j] = adTable5Ei[ pDetail->aiCID[j]];
|
||
}
|
||
|
||
for (int j=0; j < pDetail->iNCC; j++)
|
||
{
|
||
pDetail->dQi[j] = pDetail->adTable5Qi[pDetail->aiCID[j]];
|
||
pDetail->dFi[j] = 0.0;
|
||
|
||
if ( pDetail->aiCID[j] == 7) pDetail->dFi[j] = pDetail->adTable5Fi[7];
|
||
pDetail->dSi[j] = pDetail->adTable5Si[ pDetail->aiCID[j]];
|
||
|
||
pDetail->dWi[j] = pDetail->adTable5Wi[ pDetail->aiCID[j]];
|
||
}
|
||
|
||
for (int j=0; j < pDetail->iNCC; j++)
|
||
{
|
||
for (int k=j; k < pDetail->iNCC; k++)
|
||
{
|
||
pDetail->dUij[j][k] = pDetail->adTable6Uij[ pDetail->aiCID[j]][ pDetail->aiCID[k]];
|
||
pDetail->dKij[j][k] = pDetail->adTable6Kij[ pDetail->aiCID[j]][ pDetail->aiCID[k]];
|
||
pDetail->dEij[j][k] = pDetail->adTable6Eij[ pDetail->aiCID[j]][ pDetail->aiCID[k]];
|
||
pDetail->dGij[j][k] = pDetail->adTable6Gij[ pDetail->aiCID[j]][ pDetail->aiCID[k]];
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::chardl()
|
||
* 参数: AGA10STRUCT *
|
||
* 返回: void
|
||
* 目的: 计算组成相关量
|
||
* 修订:
|
||
**************************************************************************/
|
||
void Detail_chardl(Detail* pDetail, AGA10STRUCT *ptAGA10)
|
||
{
|
||
double tmfrac = 0.0;
|
||
for (int j = 0; j < pDetail->iNCC; j++) {
|
||
tmfrac += pDetail->dXi[j];
|
||
}
|
||
|
||
for (int j = 0; j < pDetail->iNCC; j++) {
|
||
pDetail->dXi[j] /= tmfrac;
|
||
}
|
||
|
||
// 重置维里系数
|
||
for (int j = 0; j < 18; j++) {
|
||
pDetail->adBcoef[j] = 0.0;
|
||
}
|
||
|
||
double k5p0 = 0.0, k2p5 = 0.0, u5p0 = 0.0, u2p5 = 0.0;
|
||
pDetail->dW = 0.0;
|
||
double q1p0 = 0.0;
|
||
pDetail->dF = 0.0;
|
||
|
||
// 计算气体分子量
|
||
ptAGA10->dMrx = 0.0;
|
||
//高位发热量
|
||
ptAGA10->dHhvMol=0.0;
|
||
//低位发热量
|
||
ptAGA10->dLhvMol=0.0;
|
||
|
||
|
||
|
||
for (int i = 0; i < pDetail->iNCC; i++) {
|
||
ptAGA10->dMrx += pDetail->dXi[i] * pDetail->dMri[i];
|
||
|
||
switch (ptAGA10->dCbtj) {
|
||
case 2:
|
||
ptAGA10->dHhvMol += pDetail->adTableHhvMol[0][i] * ptAGA10->adMixture[i];
|
||
ptAGA10->dLhvMol += pDetail-> adTableHhvMol[0][i] * ptAGA10->adMixture[i];
|
||
break;
|
||
case 1:
|
||
ptAGA10->dHhvMol += pDetail->adTableHhvMol[1][i] * ptAGA10->adMixture[i];
|
||
ptAGA10->dLhvMol += pDetail->adTableLhvMol[1][i] * ptAGA10->adMixture[i];
|
||
break;
|
||
case 0:
|
||
ptAGA10->dHhvMol += pDetail->adTableHhvMol[2][i] * ptAGA10->adMixture[i];
|
||
ptAGA10->dLhvMol += pDetail->adTableLhvMol[2][i] * ptAGA10->adMixture[i];
|
||
break;
|
||
}
|
||
|
||
k2p5 += pDetail->dXi[i] * pow(pDetail->dKi[i], 2.5);
|
||
u2p5 += pDetail->dXi[i] * pow(pDetail->dEi[i], 2.5);
|
||
pDetail->dW += pDetail->dXi[i] * pDetail->dGi[i];
|
||
q1p0 += pDetail->dXi[i] * pDetail->dQi[i];
|
||
pDetail->dF += pDetail->dXi[i] * pDetail->dXi[i] * pDetail->dFi[i];
|
||
}
|
||
|
||
ptAGA10->dHhvMol = ptAGA10->dHhvMol / ptAGA10->dMrx;
|
||
ptAGA10->dLhvMol = ptAGA10->dLhvMol / ptAGA10->dMrx;
|
||
|
||
for (int i = 0; i < pDetail->iNCC; i++) {
|
||
for (int j = i; j < pDetail->iNCC; j++) {
|
||
double Xij = (i == j) ? pDetail->dXi[i] * pDetail->dXi[j] : 2.0 * pDetail->dXi[i] * pDetail->dXi[j];
|
||
|
||
if (pDetail->dKij[i][j] != 1.0) {
|
||
double term = pow(pDetail->dKi[i] * pDetail->dKi[j], 2.5);
|
||
k5p0 += Xij * (pow(pDetail->dKij[i][j], 5.0) - 1.0) * term;
|
||
}
|
||
|
||
if (pDetail->dUij[i][j] != 1.0) {
|
||
double term = pow(pDetail->dEi[i] * pDetail->dEi[j], 2.5);
|
||
u5p0 += Xij * (pow(pDetail->dUij[i][j], 5.0) - 1.0) * term;
|
||
}
|
||
|
||
if (pDetail->dGij[i][j] != 1.0) {
|
||
double avgG = (pDetail->dGi[i] + pDetail->dGi[j]) / 2.0;
|
||
pDetail->dW += Xij * (pDetail->dGij[i][j] - 1.0) * avgG;
|
||
}
|
||
|
||
double Eij = pDetail->dEij[i][j] * sqrt(pDetail->dEi[i] * pDetail->dEi[j]);
|
||
double Gij = pDetail->dGij[i][j] * (pDetail->dGi[i] + pDetail->dGi[j]) / 2.0;
|
||
|
||
double e0p5 = sqrt(Eij);
|
||
double e2p0 = Eij * Eij;
|
||
double e3p0 = Eij * e2p0;
|
||
double e3p5 = e3p0 * e0p5;
|
||
double e4p5 = Eij * e3p5;
|
||
double e6p0 = e3p0 * e3p0;
|
||
double e7p5 = e4p5 * Eij * e2p0;
|
||
double e9p5 = e7p5 * e2p0;
|
||
double e11p0 = e4p5 * e4p5 * e2p0;
|
||
double e12p0 = e11p0 * Eij;
|
||
double e12p5 = e12p0 * e0p5;
|
||
|
||
double s3 = Xij * pow(pow(pDetail->dKi[i], 3.0) * pow(pDetail->dKi[j], 3.0), 0.5);
|
||
|
||
pDetail->adBcoef[0] += s3;
|
||
pDetail->adBcoef[1] += s3 * e0p5;
|
||
pDetail->adBcoef[2] += s3 * Eij;
|
||
pDetail->adBcoef[3] += s3 * e3p5;
|
||
pDetail->adBcoef[4] += s3 * Gij / e0p5;
|
||
pDetail->adBcoef[5] += s3 * Gij * e4p5;
|
||
pDetail->adBcoef[6] += s3 * pDetail->dQi[i] * pDetail->dQi[j] * e0p5;
|
||
pDetail->adBcoef[7] += s3 * pDetail->dSi[i] * pDetail->dSi[j] * e7p5;
|
||
pDetail->adBcoef[8] += s3 * pDetail->dSi[i] * pDetail->dSi[j] * e9p5;
|
||
pDetail->adBcoef[9] += s3 * pDetail->dWi[i] * pDetail->dWi[j] * e6p0;
|
||
pDetail->adBcoef[10] += s3 * pDetail->dWi[i] * pDetail->dWi[j] * e12p0;
|
||
pDetail->adBcoef[11] += s3 * pDetail->dWi[i] * pDetail->dWi[j] * e12p5;
|
||
pDetail->adBcoef[12] += s3 * pDetail->dFi[i] * pDetail->dFi[j] / e6p0;
|
||
pDetail->adBcoef[13] += s3 * e2p0;
|
||
pDetail->adBcoef[14] += s3 * e3p0;
|
||
pDetail->adBcoef[15] += s3 * pDetail->dQi[i] * pDetail->dQi[j] * e2p0;
|
||
pDetail->adBcoef[16] += s3 * e2p0;
|
||
pDetail->adBcoef[17] += s3 * e11p0;
|
||
}
|
||
}
|
||
|
||
// 应用An系数
|
||
for (int i = 0; i < 18; i++) {
|
||
pDetail->adBcoef[i] *= pDetail->adAn[i];
|
||
}
|
||
|
||
// 计算混合物参数
|
||
pDetail->dKp3 = pow(k5p0 + pow(k2p5, 2.0), 0.6);
|
||
pDetail->dU = pow(u5p0 + pow(u2p5, 2.0), 0.2);
|
||
pDetail->dQp2 = q1p0 * q1p0;
|
||
}
|
||
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::bvir()
|
||
* 参数: void
|
||
* 返回: void
|
||
* 目的: 计算第二维里系数及其偏导数
|
||
* 修订:
|
||
**************************************************************************/
|
||
void Detail_bvir(Detail* pDetail)
|
||
{
|
||
pDetail->dB = pDetail->ddBdT = pDetail->dd2BdT2 = 0.0;
|
||
|
||
double t = pDetail->dT;
|
||
double t0p5 = sqrt(t);
|
||
double t2p0 = t * t;
|
||
double t3p0 = t * t2p0;
|
||
double t3p5 = t3p0 * t0p5;
|
||
double t4p5 = t * t3p5;
|
||
double t6p0 = t3p0 * t3p0;
|
||
double t11p0 = t4p5 * t4p5 * t2p0;
|
||
double t7p5 = t6p0 * t * t0p5;
|
||
double t9p5 = t7p5 * t2p0;
|
||
double t12p0 = t9p5 * t0p5 * t2p0;
|
||
double t12p5 = t12p0 * t0p5;
|
||
double t1p5 = t * t0p5;
|
||
double t4p0 = t2p0 * t2p0;
|
||
|
||
double Bx[18];
|
||
for (int i = 0; i < 18; i++) {
|
||
// double un = pDetail->adUn[i];
|
||
// double an = pDetail->adAn[i];
|
||
double bcoef = pDetail->adBcoef[i];
|
||
|
||
switch (i) {
|
||
case 0: Bx[i] = bcoef; break;
|
||
case 1: Bx[i] = bcoef / t0p5; break;
|
||
case 2: Bx[i] = bcoef / t; break;
|
||
case 3: Bx[i] = bcoef / t3p5; break;
|
||
case 4: Bx[i] = bcoef * t0p5; break;
|
||
case 5: Bx[i] = bcoef / t4p5; break;
|
||
case 6: Bx[i] = bcoef / t0p5; break;
|
||
case 7: Bx[i] = bcoef / t7p5; break;
|
||
case 8: Bx[i] = bcoef / t9p5; break;
|
||
case 9: Bx[i] = bcoef / t6p0; break;
|
||
case 10: Bx[i] = bcoef / t12p0; break;
|
||
case 11: Bx[i] = bcoef / t12p5; break;
|
||
case 12: Bx[i] = bcoef * t6p0; break;
|
||
case 13: Bx[i] = bcoef / t2p0; break;
|
||
case 14: Bx[i] = bcoef / t3p0; break;
|
||
case 15: Bx[i] = bcoef / t2p0; break;
|
||
case 16: Bx[i] = bcoef / t2p0; break;
|
||
case 17: Bx[i] = bcoef / t11p0; break;
|
||
default: Bx[i] = 0.0;
|
||
}
|
||
pDetail->dB += Bx[i];
|
||
}
|
||
|
||
// 计算一阶导数
|
||
for (int i = 0; i < 18; i++) {
|
||
if (pDetail->adUn[i] != 0.0) {
|
||
Bx[i] *= pDetail->adUn[i] / t;
|
||
}
|
||
}
|
||
for (int i = 0; i < 18; i++) {
|
||
if (pDetail->adUn[i] != 0.0) {
|
||
pDetail->ddBdT -= Bx[i];
|
||
}
|
||
}
|
||
|
||
// 计算二阶导数
|
||
for (int i = 0; i < 18; i++) {
|
||
if (pDetail->adUn[i] != 0.0 && pDetail->adUn[i] != -1.0) {
|
||
Bx[i] *= (pDetail->adUn[i] + 1.0) / t;
|
||
}
|
||
}
|
||
for (int i = 0; i < 18; i++) {
|
||
if (pDetail->adUn[i] != 0.0 && pDetail->adUn[i] != -1.0) {
|
||
pDetail->dd2BdT2 += Bx[i] ;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::temp()
|
||
* 参数: void
|
||
* 返回: void
|
||
* 目的: 计算温度相关量
|
||
* 修订:
|
||
**************************************************************************/
|
||
void Detail_temp(Detail* pDetail)
|
||
{
|
||
Detail_bvir(pDetail);
|
||
|
||
double tr = pDetail->dT / pDetail->dU;
|
||
double tr0p5 = sqrt(tr);
|
||
double tr1p5 = tr * tr0p5;
|
||
double tr2p0 = tr * tr;
|
||
double tr3p0 = tr * tr2p0;
|
||
double tr4p0 = tr * tr3p0;
|
||
double tr5p0 = tr * tr4p0;
|
||
double tr6p0 = tr * tr5p0;
|
||
double tr7p0 = tr * tr6p0;
|
||
double tr8p0 = tr * tr7p0;
|
||
double tr9p0 = tr * tr8p0;
|
||
double tr11p0 = tr6p0 * tr5p0;
|
||
double tr13p0 = tr6p0 * tr7p0;
|
||
double tr21p0 = tr9p0 * tr9p0 * tr3p0;
|
||
double tr22p0 = tr * tr21p0;
|
||
double tr23p0 = tr * tr22p0;
|
||
|
||
for (int i = 12; i < 58; i++) {
|
||
double un = pDetail->adUn[i];
|
||
double an = pDetail->adAn[i];
|
||
double tr_exp = pow(tr, -un);
|
||
pDetail->adFn[i] = an * tr_exp;
|
||
}
|
||
|
||
}
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::ddetail()
|
||
* 参数: AGA10STRUCT *
|
||
* 返回: void
|
||
* 目的: 计算密度
|
||
* 修订:
|
||
**************************************************************************/
|
||
void Detail_ddetail(Detail* pDetail,AGA10STRUCT *ptAGA10)
|
||
{
|
||
int imax, i;
|
||
double epsp, epsr, epsmin;
|
||
double x1, x2, x3, y1, y2, y3;
|
||
double delx, delprv, delmin, delbis, xnumer, xdenom, sgndel;
|
||
double y2my3, y3my1, y1my2, boundn;
|
||
|
||
// 初始化收敛容差
|
||
imax = 150;
|
||
epsp = 1.e-6;
|
||
epsr = 1.e-6;
|
||
epsmin = 1.e-7;
|
||
pDetail->dRho =0.0;
|
||
|
||
// 调用子程序braket来包围密度解
|
||
Detail_braket(pDetail,ptAGA10);
|
||
|
||
// 检查从子程序braket返回的"lStatus"值
|
||
if (ptAGA10->lStatus == MAX_NUM_OF_ITERATIONS_EXCEEDED ||
|
||
ptAGA10->lStatus == NEGATIVE_DENSITY_DERIVATIVE)
|
||
{
|
||
return;
|
||
}
|
||
|
||
// 设置开始Brent方法
|
||
// x是自变量,y是因变量
|
||
// delx是当前迭代中x的变化
|
||
// delprv是前一次迭代中x的变化
|
||
x1 = pDetail->dRhoL;
|
||
x2 = pDetail->dRhoH;
|
||
y1 = pDetail->dPRhoL - pDetail->dP;
|
||
y2 = pDetail->dPRhoH - pDetail->dP;
|
||
delx = x1 - x2;
|
||
delprv = delx;
|
||
|
||
// 解被包围在x1和x2之间
|
||
// 引入第三个点x3用于二次插值
|
||
x3 = x1;
|
||
y3 = y1;
|
||
|
||
for (i=0; i < imax; i++)
|
||
{
|
||
// y3必须与y2符号相反,所以解在x2,x3之间
|
||
if (y2 * y3 > 0.0)
|
||
{
|
||
x3 = x1;
|
||
y3 = y1;
|
||
delx = x1 - x2;
|
||
delprv = delx;
|
||
}
|
||
|
||
// y2必须是y最接近y=0.0的值,然后x2new=x2old+delx
|
||
if (fabs(y3) < fabs(y2))
|
||
{
|
||
x1 = x2;
|
||
x2 = x3;
|
||
x3 = x1;
|
||
y1 = y2;
|
||
y2 = y3;
|
||
y3 = y1;
|
||
}
|
||
|
||
// delmin是未收敛迭代允许的最小步长
|
||
delmin = epsmin * fabs(x2) ;
|
||
|
||
// sgndel,x2变化的符号是delbis的符号
|
||
delbis = 0.5 * (x3 - x2) ;
|
||
|
||
if (fabs(delprv) < delmin || fabs(y1) < fabs(y2)) {
|
||
// use bisection
|
||
delx = delbis;
|
||
delprv = delbis;
|
||
} else
|
||
{
|
||
if (x3 != x1) {
|
||
// use inverse quadratic interpolation
|
||
y2my3 = y2 - y3;
|
||
y3my1 = y3 - y1;
|
||
y1my2 = y1 - y2;
|
||
xdenom = -(y1my2) * (y2my3) * (y3my1);
|
||
xnumer = x1 * y2 * y3 * (y2my3)
|
||
+ x2 * y3 * y1 * (y3my1)
|
||
+ x3 * y1 * y2 * (y1my2) - x2 * xdenom;
|
||
} else {
|
||
// use inverse linear interpolation
|
||
xnumer = (x2 - x1) * y2;
|
||
xdenom = y1 - y2;
|
||
}
|
||
// before calculating delx check delx=xnumer/xdenom is not out of bounds
|
||
if (2.0 * fabs(xnumer) < fabs(delprv * xdenom)) {
|
||
// procedure converging, use interpolation
|
||
delprv = delx;
|
||
delx = xnumer / xdenom;
|
||
} else {
|
||
// procedure diverging, use bisection
|
||
delx = delbis;
|
||
delprv = delbis;
|
||
}
|
||
|
||
}
|
||
if ((fabs(y2) < epsp * pDetail->dP) && (fabs(delx) < epsr * fabs(x2))) {
|
||
pDetail->dRho = x2 + delx;
|
||
return;
|
||
}
|
||
|
||
if (fabs(delx) < delmin)
|
||
{
|
||
sgndel = delbis / fabs(delbis);
|
||
delx = 1.0000009 * sgndel * delmin;
|
||
delprv = delx;
|
||
}
|
||
|
||
// 最终检查以确保新的x2在旧x2和x3的范围内
|
||
// boundn为负表示新的x2在旧x2和x3的范围内
|
||
boundn = delx * (x2 + delx - x3);
|
||
if (boundn > 0.0)
|
||
{
|
||
// 过程超出界限,使用二分法
|
||
delx = delbis;
|
||
delprv = delbis;
|
||
}
|
||
|
||
// 为下一次迭代重新标记变量
|
||
// x1new = x2old, y1new=y2old
|
||
x1 = x2;
|
||
y1 = y2;
|
||
|
||
// 下一次迭代的x2, y2值
|
||
x2 = x2 + delx;
|
||
Detail_pdetail(pDetail,x2);
|
||
y2 = pDetail->dPCalc - pDetail->dP;
|
||
}
|
||
|
||
// ddetail: 超过最大迭代次数
|
||
ptAGA10->lStatus=MAX_NUM_OF_ITERATIONS_EXCEEDED;
|
||
pDetail->dRho = x2;
|
||
}
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::braket()
|
||
* 参数: AGA10STRUCT *
|
||
* 返回: void
|
||
* 目的: 包围密度解
|
||
* 修订:
|
||
**************************************************************************/
|
||
void Detail_braket(Detail* pDetail,AGA10STRUCT *ptAGA10)
|
||
{
|
||
// 函数局部变量
|
||
int imax, it;
|
||
double del, rhomax, videal;
|
||
double rho1, rho2, p1, p2;
|
||
|
||
// 初始化
|
||
imax = 200;
|
||
rho1 = 0.0;
|
||
p1 = 0.0;
|
||
rhomax = 1.0 / pDetail->dKp3;
|
||
|
||
if (pDetail->dT > 1.2593 * pDetail->dU)
|
||
rhomax = 20.0 * rhomax;
|
||
|
||
videal = RGASKJ * pDetail->dT / pDetail->dP;
|
||
|
||
if (fabs(pDetail->dB) < (0.167 * videal))
|
||
{
|
||
rho2 = 0.95 / (videal + pDetail->dB);
|
||
}
|
||
else
|
||
{
|
||
rho2 = 1.15 / videal;
|
||
}
|
||
|
||
del = rho2 / 20.0;
|
||
|
||
// 开始迭代密度搜索循环
|
||
for (it = 0; it < imax; it++)
|
||
{
|
||
if (rho2 > rhomax && ptAGA10->lStatus != MAX_DENSITY_IN_BRAKET_EXCEEDED)
|
||
{
|
||
// braket中的密度超过最大允许密度
|
||
ptAGA10->lStatus = MAX_DENSITY_IN_BRAKET_EXCEEDED;
|
||
del = 0.01 * (rhomax - rho1) + (pDetail->dP / (RGASKJ * pDetail->dT)) / 20.0;
|
||
rho2 = rho1 + del;
|
||
continue;
|
||
}
|
||
|
||
// 计算密度rho2处的压力p2
|
||
Detail_pdetail(pDetail,rho2);
|
||
p2 = pDetail->dPCalc;
|
||
|
||
// 测试p2相对于p和相对于p1的值
|
||
if (p2 > pDetail->dP)
|
||
{
|
||
// 密度根被包围(p1<p且p2>p)
|
||
pDetail->dRhoL = rho1;
|
||
pDetail->dPRhoL = p1;
|
||
pDetail->dRhoH = rho2;
|
||
pDetail->dPRhoH = p2;
|
||
ptAGA10->lStatus = NORMAL;
|
||
return;
|
||
}
|
||
else if (p2 > p1)
|
||
{
|
||
if (ptAGA10->lStatus == MAX_DENSITY_IN_BRAKET_EXCEEDED)
|
||
del *= 2.0;
|
||
rho1 = rho2;
|
||
p1 = p2;
|
||
rho2 = rho1 + del;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
// lStatus= NEGATIVE_DENSITY_DERIVATIVE表示
|
||
// 压力有负的密度导数,因为p2小于某个先前的压力
|
||
ptAGA10->lStatus = NEGATIVE_DENSITY_DERIVATIVE;
|
||
pDetail->dRho = rho1;
|
||
return;
|
||
}
|
||
}
|
||
|
||
// 如果从底部退出,则超过最大迭代次数
|
||
ptAGA10->lStatus = MAX_NUM_OF_ITERATIONS_EXCEEDED;
|
||
pDetail->dRho = rho2;
|
||
return;
|
||
}
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::pdetail()
|
||
* 参数: double
|
||
* 返回: void
|
||
* 目的: 给定D和T计算压力。调用zdetail()
|
||
* 修订:
|
||
**************************************************************************/
|
||
void Detail_pdetail(Detail* pDetail,double dD)
|
||
{
|
||
pDetail->dPCalc = Detail_zdetail(pDetail,dD) * dD * RGASKJ * pDetail->dT;
|
||
}
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::zdetail()
|
||
* 参数: double
|
||
* 返回: void
|
||
* 目的: 计算压缩性
|
||
* 修订:
|
||
**************************************************************************/
|
||
double Detail_zdetail(Detail* pDetail,double d)
|
||
{
|
||
// 函数局部变量
|
||
double D1, D2, D3, D4, D5, D6, D7, D8, D9, exp1, exp2, exp3, exp4;
|
||
|
||
// 约化密度的幂
|
||
D1 = pDetail->dKp3 * d;
|
||
D2 = D1 * D1;
|
||
D3 = D2 * D1;
|
||
D4 = D3 * D1;
|
||
D5 = D4 * D1;
|
||
D6 = D5 * D1;
|
||
D7 = D6 * D1;
|
||
D8 = D7 * D1;
|
||
D9 = D8 * D1;
|
||
|
||
exp1 = exp(-D1);
|
||
exp2 = exp(-D2);
|
||
exp3 = exp(-D3);
|
||
exp4 = exp(-D4);
|
||
|
||
// 以下Z的表达式从AGA8的FORTRAN示例中采用
|
||
pDetail->dZ = 1.0 + pDetail->dB * d
|
||
+pDetail->adFn[12] * D1 * (exp3 - 1.0 - 3.0 * D3 * exp3)
|
||
+(pDetail->adFn[13] + pDetail->adFn[14] + pDetail->adFn[15]) * D1 * (exp2 - 1.0 - 2.0 * D2 * exp2)
|
||
+(pDetail->adFn[16] + pDetail->adFn[17]) * D1 * (exp4 - 1.0 - 4.0 * D4 * exp4)
|
||
+(pDetail->adFn[18] + pDetail->adFn[19]) * D2 * 2.0
|
||
+(pDetail->adFn[20] + pDetail->adFn[21] + pDetail->adFn[22]) * D2 * (2.0 - 2.0 * D2) * exp2
|
||
+(pDetail->adFn[23] + pDetail->adFn[24] + pDetail->adFn[25]) * D2 * (2.0 - 4.0 * D4) * exp4
|
||
+pDetail->adFn[26] * D2 * (2.0 - 4.0 * D4) * exp4
|
||
+pDetail->adFn[27] * D3 * 3.0
|
||
+(pDetail->adFn[28] + pDetail->adFn[29]) * D3 * (3.0 - D1) * exp1
|
||
+(pDetail->adFn[30] + pDetail->adFn[31]) * D3 * (3.0 - 2.0 * D2) * exp2
|
||
+(pDetail->adFn[32] + pDetail->adFn[33]) * D3 * (3.0 - 3.0 * D3) * exp3
|
||
+(pDetail->adFn[34] + pDetail->adFn[35] + pDetail->adFn[36]) * D3 * (3.0 - 4.0 * D4) * exp4
|
||
+(pDetail->adFn[37] + pDetail->adFn[38]) * D4 * 4.0
|
||
+(pDetail->adFn[39] + pDetail->adFn[40] + pDetail->adFn[41]) * D4 * (4.0 - 2.0 * D2) * exp2
|
||
+(pDetail->adFn[42] + pDetail->adFn[43]) * D4 * (4.0 - 4.0 * D4) * exp4
|
||
+pDetail->adFn[44] * D5 * 5.0
|
||
+(pDetail->adFn[45] + pDetail->adFn[46]) * D5 * (5.0 - 2.0 * D2) * exp2
|
||
+(pDetail->adFn[47] + pDetail->adFn[48]) * D5 * (5.0 - 4.0 * D4) * exp4
|
||
+pDetail->adFn[49] * D6 * 6.0
|
||
+pDetail->adFn[50] * D6 * (6.0 - 2.0 * D2) * exp2
|
||
+pDetail->adFn[51] * D7 * 7.0
|
||
+pDetail->adFn[52] * D7 * (7.0 - 2.0 * D2) * exp2
|
||
+pDetail->adFn[53] * D8 * (8.0 - D1) * exp1
|
||
+(pDetail->adFn[54] + pDetail->adFn[55]) * D8 * (8.0 - 2.0 * D2) * exp2
|
||
+(pDetail->adFn[56] + pDetail->adFn[57]) * D9 * (9.0 - 2.0 * D2) * exp2;
|
||
|
||
return pDetail->dZ;
|
||
}
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::dZdT()
|
||
* 参数: double
|
||
* 返回: double
|
||
* 目的: 计算Z对T的一阶偏导数
|
||
* 修订:
|
||
**************************************************************************/
|
||
double Detail_dZdT(Detail* pDetail,double d)
|
||
{
|
||
// 函数局部变量
|
||
double tmp;
|
||
int i;
|
||
double D1, D2, D3, D4, D5, D6, D7, D8, exp1, exp2, exp3, exp4;
|
||
|
||
// 设置约化密度的幂
|
||
D1 = pDetail->dKp3 * d;
|
||
D2 = D1 * D1;
|
||
D3 = D2 * D1;
|
||
D4 = D3 * D1;
|
||
D5 = D4 * D1;
|
||
D6 = D5 * D1;
|
||
D7 = D6 * D1;
|
||
D8 = D7 * D1;
|
||
// D9 = D8 * D1;
|
||
|
||
exp1 = exp(-D1);
|
||
exp2 = exp(-D2);
|
||
exp3 = exp(-D3);
|
||
exp4 = exp(-D4);
|
||
|
||
// 从我们已经计算的系数(An[n])创建项uC*T^-(un+1)
|
||
for (i=12; i < 58; i++)
|
||
{
|
||
if (pDetail->adUn[i] && pDetail->adFn[i])
|
||
{
|
||
pDetail-> fx[i] = (pDetail->adFn[i] * pDetail->adUn[i] * D1) / pDetail->dT;
|
||
}
|
||
else
|
||
{
|
||
pDetail->fx[i] = 0.0;
|
||
}
|
||
}
|
||
|
||
// 方程的初始部分
|
||
pDetail-> ddZdT = d * pDetail->ddBdT;
|
||
|
||
// n=13对氢以外的所有物质评估为零,对氢fn=1
|
||
if (pDetail->dF)
|
||
pDetail->ddZdT += pDetail->fx[12] - (pDetail->fx[12] * (1.0 - 3.0 * D3) * exp3);
|
||
|
||
tmp = (1.0 - 2.0 * D2) * exp2;
|
||
pDetail->ddZdT += (pDetail->fx[13] - (pDetail->fx[13] * tmp));
|
||
pDetail->ddZdT += pDetail->fx[14] - (pDetail->fx[14] * tmp);
|
||
pDetail->ddZdT += pDetail->fx[15] - (pDetail->fx[15] * tmp);
|
||
|
||
tmp = (1.0 - 4.0 * D4) * exp4;
|
||
pDetail->ddZdT += pDetail->fx[16] - (pDetail->fx[16] * tmp);
|
||
pDetail->ddZdT += pDetail->fx[17] - (pDetail->fx[17] * tmp);
|
||
|
||
pDetail-> ddZdT = pDetail->ddZdT - (pDetail->fx[18] + pDetail->fx[19]) * D1 * 2.0
|
||
-(pDetail->fx[21] + pDetail->fx[22]) * D1 * (2.0 - 2.0 * D2) * exp2
|
||
-(pDetail->fx[23] + pDetail->fx[24] + pDetail->fx[25]) * D1 * (2.0 - 4.0 * D4) * exp4
|
||
-pDetail->fx[26] * D1 * (2.0 - 4.0 * D4) * exp4
|
||
-pDetail->fx[27] * D2 * 3.0
|
||
-(pDetail->fx[28] +pDetail-> fx[29]) * D2 * (3.0 - D1) * exp1
|
||
-(pDetail->fx[30] + pDetail->fx[31]) * D2 * (3.0 - 2.0 * D2) * exp2
|
||
-(pDetail->fx[32] + pDetail->fx[33]) * D2 * (3.0 - 3.0 * D3) * exp3
|
||
-(pDetail->fx[34] + pDetail->fx[35] + pDetail->fx[36]) * D2 * (3.0 - 4.0 * D4) * exp4
|
||
-pDetail->fx[37] * D3 * 4.0
|
||
-(pDetail->fx[39] + pDetail->fx[40] + pDetail->fx[41]) * D3 * (4.0 - 2.0 * D2) * exp2
|
||
-(pDetail->fx[42] + pDetail->fx[43]) * D3 * (4.0 - 4.0 * D4) * exp4
|
||
-pDetail->fx[44] * D4 * 5.0
|
||
-(pDetail->fx[45] + pDetail->fx[46]) * D4 * (5.0 - 2.0 * D2) * exp2
|
||
-(pDetail->fx[47] + pDetail->fx[48]) * D4 * (5.0 - 4.0 * D4) * exp4
|
||
-pDetail->fx[49] * D5 * 6.0
|
||
-pDetail->fx[50] * D5 * (6.0 - 2.0 * D2) * exp2
|
||
-pDetail->fx[51] * D6 * 7.0
|
||
-pDetail->fx[52] * D6 * (7.0 - 2.0 * D2) * exp2
|
||
-pDetail->fx[53] * D7 * (8.0 - D1) * exp1
|
||
-pDetail->fx[54] * D7 * (8.0 - 2.0 * D2) * exp2
|
||
-pDetail->fx[56] * D8 * (9.0 - 2.0 * D2) * exp2;
|
||
|
||
return pDetail->ddZdT;
|
||
}
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::d2ZdT2()
|
||
* 参数: double
|
||
* 返回: double
|
||
* 目的: 计算Z对T的二阶偏导数
|
||
* 修订:
|
||
**************************************************************************/
|
||
double Detail_d2ZdT2(Detail* pDetail,double d)
|
||
{
|
||
// 函数局部变量
|
||
double tmp;
|
||
int i;
|
||
double D1, D2, D3, D4, D5, D6, D7, D8, exp1, exp2, exp3, exp4;
|
||
|
||
// 设置约化密度的幂
|
||
D1 = pDetail->dKp3 * d;
|
||
D2 = D1 * D1;
|
||
D3 = D2 * D1;
|
||
D4 = D3 * D1;
|
||
D5 = D4 * D1;
|
||
D6 = D5 * D1;
|
||
D7 = D6 * D1;
|
||
D8 = D7 * D1;
|
||
//D9 = D8 * D1;
|
||
|
||
exp1 = exp(-D1);
|
||
exp2 = exp(-D2);
|
||
exp3 = exp(-D3);
|
||
exp4 = exp(-D4);
|
||
|
||
// 从我们已经计算的系数(An[n])创建项uC*T^-(un+1)
|
||
for (i=12; i < 58; i++)
|
||
{
|
||
if (pDetail->adUn[i] && pDetail->adFn[i])
|
||
{
|
||
pDetail->fx[i] = (pDetail->adFn[i] * D1 * pDetail->adUn[i] * (pDetail->adUn[i] + 1.0)) / (pDetail->dT * pDetail->dT);
|
||
}
|
||
else
|
||
{
|
||
pDetail->fx[i] = 0.0;
|
||
}
|
||
}
|
||
|
||
// 方程的初始部分
|
||
pDetail->dd2ZdT2 = d * pDetail->dd2BdT2;
|
||
|
||
// n=13对氢以外的所有物质评估为零,对氢fn=1
|
||
if (pDetail->dF)
|
||
pDetail->dd2ZdT2 += pDetail->fx[12] - (pDetail->fx[12] * (1.0 - 3.0 * D3) * exp3);
|
||
|
||
tmp = (1.0 - 2.0 * D2) * exp2;
|
||
pDetail->dd2ZdT2 += -pDetail->fx[13] + (pDetail->fx[13] * tmp);
|
||
pDetail->dd2ZdT2 += -pDetail->fx[14] + (pDetail->fx[14] * tmp);
|
||
pDetail->dd2ZdT2 += -pDetail->fx[15] + (pDetail->fx[15] * tmp);
|
||
|
||
tmp = (1.0 - 4.0 * D4) * exp4;
|
||
pDetail->dd2ZdT2 += -pDetail->fx[16] + (pDetail->fx[16] * tmp);
|
||
pDetail->dd2ZdT2 += -pDetail->fx[17] + (pDetail->fx[17] * tmp);
|
||
|
||
pDetail->dd2ZdT2 = pDetail->dd2ZdT2 + (pDetail->fx[18] + pDetail->fx[19]) * D1 * 2.0
|
||
+(pDetail->fx[21] + pDetail->fx[22]) * D1 * (2.0 - 2.0 * D2) * exp2
|
||
+(pDetail->fx[23] + pDetail->fx[24] + pDetail->fx[25]) * D1 * (2.0 - 4.0 * D4) * exp4
|
||
+pDetail->fx[26] * D1 * (2.0 - 4.0 * D4) * exp4
|
||
+pDetail->fx[27] * D2 * 3.0
|
||
+(pDetail->fx[28] + pDetail->fx[29]) * D2 * (3.0 - D1) * exp1
|
||
+(pDetail->fx[30] + pDetail->fx[31]) * D2 * (3.0 - 2.0 * D2) * exp2
|
||
+(pDetail->fx[32] + pDetail->fx[33]) * D2 * (3.0 - 3.0 * D3) * exp3
|
||
+(pDetail->fx[34] + pDetail->fx[35] + pDetail->fx[36]) * D2 * (3.0 - 4.0 * D4) * exp4
|
||
+pDetail->fx[37] * D3 * 4.0
|
||
+(pDetail->fx[39] + pDetail->fx[40] + pDetail->fx[41]) * D3 * (4.0 - 2.0 * D2) * exp2
|
||
+(pDetail->fx[42] + pDetail->fx[43]) * D3 * (4.0 - 4.0 * D4) * exp4
|
||
+pDetail->fx[44] * D4 * 5.0
|
||
+(pDetail->fx[45] + pDetail->fx[46]) * D4 * (5.0 - 2.0 * D2) * exp2
|
||
+(pDetail->fx[47] + pDetail->fx[48]) * D4 * (5.0 - 4.0 * D4) * exp4
|
||
+pDetail->fx[49] * D5 * 6.0
|
||
+pDetail->fx[50] * D5 * (6.0 - 2.0 * D2) * exp2
|
||
+pDetail->fx[51] * D6 * 7.0
|
||
+pDetail->fx[52] * D6 * (7.0 - 2.0 * D2) * exp2
|
||
+pDetail->fx[53] * D7 * (8.0 - D1) * exp1
|
||
+pDetail->fx[54] * D7 * (8.0 - 2.0 * D2) * exp2
|
||
+pDetail->fx[56] * D8 * (9.0 - 2.0 * D2) * exp2;
|
||
|
||
return pDetail->dd2ZdT2;
|
||
}
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::dZdD()
|
||
* 参数: double
|
||
* 返回: double
|
||
* 目的: 计算Z对D的一阶偏导数
|
||
* 修订:
|
||
**************************************************************************/
|
||
double Detail_dZdD(Detail* pDetail,double d)
|
||
{
|
||
double temp, temp1, temp2, temp3;
|
||
int i;
|
||
double D1, D2, D3, D4, D5, D6, D7, D8,exp1, exp2, exp3, exp4;
|
||
|
||
// 设置约化密度的幂
|
||
D1 = pDetail->dKp3 * d;
|
||
D2 = D1 * D1;
|
||
D3 = D2 * D1;
|
||
D4 = D3 * D1;
|
||
D5 = D4 * D1;
|
||
D6 = D5 * D1;
|
||
D7 = D6 * D1;
|
||
D8 = D7 * D1;
|
||
//D9 = D8 * D1;
|
||
|
||
exp1 = exp(-D1);
|
||
exp2 = exp(-D2);
|
||
exp3 = exp(-D3);
|
||
exp4 = exp(-D4);
|
||
|
||
// 从我们已经计算的系数(An[n])创建项uC*T^-(un+1)
|
||
for (i=12; i < 58; i++)
|
||
{
|
||
pDetail->fx[i] = pDetail->adFn[i];
|
||
}
|
||
|
||
// 方程的初始部分
|
||
pDetail->ddZdD = pDetail->dB / pDetail->dKp3;
|
||
|
||
// 评估所有剩余项,尽可能简化
|
||
|
||
// n=13对氢以外的所有物质评估为零,对氢fn=1
|
||
if (pDetail->dF)
|
||
{
|
||
temp1 = -9.0 * D3 * exp3;
|
||
temp2 = (1.0 - 3.0 * D3) * exp3;
|
||
temp3 = -temp2 * 3.0 * D6;
|
||
temp = temp1 + temp2 + temp3;
|
||
pDetail->ddZdD += -pDetail->fx[12] + pDetail->fx[12] * temp;
|
||
}
|
||
|
||
//n = 14..16
|
||
|
||
temp1 = -4.0 * D2 * exp2 ;
|
||
|
||
temp2 = (1.0 - 2.0 * D2) * exp2 ; temp3 = -temp2 * 2.0 * D2;
|
||
|
||
temp = temp1 + temp2 + temp3 ; pDetail->ddZdD += -pDetail->fx[13] + pDetail->fx[13] * temp ; pDetail->ddZdD += -pDetail->fx[14] + pDetail->fx[14] * temp ; pDetail->ddZdD += -pDetail->fx[15] + pDetail->fx[15] * temp ;
|
||
|
||
// n = 17..18
|
||
temp1 = -16.0 * D4 * exp4 ;
|
||
temp2 = (1.0 - 4.0 * D4) * exp4 ;
|
||
temp3 = -temp2 * 4.0 * D4 ;
|
||
temp = temp1 + temp2 + temp3 ; pDetail->ddZdD += -pDetail->fx[16] + pDetail->fx[16] * temp ; pDetail->ddZdD += -pDetail->fx[17] + pDetail->fx[17] * temp ;
|
||
|
||
// n = 19..20 temp = 4.0 * D1 ;
|
||
|
||
pDetail->ddZdD += pDetail->fx[18] * temp ; pDetail->ddZdD += pDetail->fx[19] * temp ;
|
||
|
||
|
||
|
||
|
||
// n = 21..23
|
||
temp1 = -4.0 * D3 * exp2 ;
|
||
temp2 = (2.0 - 2.0 * D2) * 2.0 * D1 * exp2 ;
|
||
temp3 = -temp2 * D2;
|
||
temp = temp1 + temp2 + temp3 ;
|
||
pDetail->ddZdD += pDetail->fx[20] * temp ;
|
||
pDetail->ddZdD += pDetail->fx[21] * temp ;
|
||
pDetail->ddZdD += pDetail->fx[22] * temp ;
|
||
// n = 24..27
|
||
temp1 = -16.0 * D5 * exp4 ;
|
||
temp2 = (2.0 - 4.0 * D4) * 2.0 * D1 * exp4 ;
|
||
temp3 = -temp2 * 2.0 * D4 ;
|
||
temp = temp1 + temp2 + temp3 ;
|
||
pDetail->ddZdD += pDetail->fx[23] * temp ;
|
||
pDetail->ddZdD += pDetail->fx[24] * temp ;
|
||
pDetail->ddZdD += pDetail->fx[25] * temp ;
|
||
pDetail->ddZdD += pDetail->fx[26] * temp ;
|
||
// n = 28
|
||
temp = 9.0 * D2 ;
|
||
pDetail->ddZdD += pDetail->fx[27] * temp ;
|
||
// n = 29..30
|
||
temp = -D3 * exp1 + (3.0 - D1) * 3.0 * D2 * exp1 ;
|
||
temp -= (3.0 - D1) * D3 * exp1 ;
|
||
pDetail->ddZdD += pDetail->fx[28] * temp ;
|
||
pDetail->ddZdD += pDetail->fx[29] * temp ;
|
||
// n = 31..32
|
||
temp1 = -4.0 * D4 * exp2 ;
|
||
temp2 = (3.0 - 2.0 * D2) * 3.0 * D2 * exp2 ;
|
||
temp3 = -(3.0 - 2.0 * D2) * 2.0 * D4 * exp2 ;
|
||
temp = temp1 + temp2 + temp3 ;
|
||
pDetail->ddZdD += pDetail->fx[30] * temp ;
|
||
pDetail->ddZdD += pDetail->fx[31] * temp ;
|
||
// n = 33..34
|
||
temp1 = -9.0 * D5 * exp3 ;
|
||
|
||
|
||
|
||
|
||
temp2 = (3.0 - 3.0 * D3) * 3.0 * D2 * exp3 ; temp3 = -(3.0 - 3.0 * D3) * 3.0 * D5 * exp3 ; temp = temp1 + temp2 + temp3 ;
|
||
|
||
pDetail->ddZdD += pDetail->fx[32] * temp ; pDetail->ddZdD += pDetail->fx[33] * temp ;
|
||
|
||
// n = 35..37
|
||
|
||
temp1 = -16.0 * D6 * exp4 ;
|
||
temp2 = (3.0 - 4.0 * D4) * 3.0 * D2 * exp4 ; temp3 = -(3.0 - 4.0 * D4) * D6 * 4.0 * exp4 ; temp = temp1 + temp2 + temp3 ;
|
||
|
||
pDetail->ddZdD += pDetail->fx[34] * temp ; pDetail->ddZdD += pDetail->fx[35] * temp ; pDetail->ddZdD += pDetail->fx[36] * temp ;
|
||
|
||
//n = 38..39 temp = 16.0 * D3 ;
|
||
pDetail->ddZdD += pDetail->fx[37] * temp ; pDetail->ddZdD += pDetail->fx[38] * temp ;
|
||
|
||
//n = 40..42
|
||
|
||
temp1 = -4.0 * D5 * exp2 ;
|
||
temp2 = (4.0 - 2.0 * D2) * 4.0 * D3 * exp2 ; temp3 = -(4.0 - 2.0 * D2) * 2.0 * D5 * exp2 ; temp = temp1 + temp2 + temp3 ;
|
||
|
||
pDetail->ddZdD += pDetail->fx[39] * temp ; pDetail->ddZdD += pDetail->fx[40] * temp ; pDetail->ddZdD += pDetail->fx[41] * temp ;
|
||
|
||
// n = 43..44
|
||
|
||
temp = -16.0 * D7 * exp4 + (4.0 - 4.0 * D4) * 4.0 * D3 * exp4 ; temp -= (4.0 - 4.0 * D4) * D7 * 4.0 * exp4 ;
|
||
|
||
pDetail->ddZdD += pDetail->fx[42] * temp ; pDetail->ddZdD += pDetail->fx[43] * temp ;
|
||
|
||
// n = 45
|
||
|
||
temp = 25.0 * D4 ; pDetail->ddZdD += pDetail->fx[44] * temp ;
|
||
|
||
// n = 46..47
|
||
|
||
|
||
|
||
|
||
temp = -4.0 * D6 * exp2 + (5.0 - 2.0 * D2) * 5.0 * D4 * exp2 ; temp -= (5.0 - 2.0 * D2) * D6 * 2.0 * exp2 ;
|
||
|
||
pDetail->ddZdD += pDetail->fx[45] * temp ; pDetail->ddZdD += pDetail->fx[46] * temp ;
|
||
|
||
// n = 48..49
|
||
|
||
temp = -16.0 * D8 * exp4 + (5.0 - 4.0 * D4) * 5.0 * D4 * exp4 ; temp -= (5.0 - 4.0 * D4) * D8 * 4.0 * exp4 ;
|
||
|
||
pDetail->ddZdD += pDetail->fx[47] * temp ; pDetail->ddZdD += pDetail->fx[48] * temp ;
|
||
|
||
// n = 50
|
||
|
||
temp = 36.0 * D5 ; pDetail->ddZdD += pDetail->fx[49] * temp ;
|
||
|
||
// n = 51
|
||
|
||
temp = -4.0 * D7 * exp2 + (6.0 - 2.0 * D2) * 6.0 * D5 * exp2 ; temp -= (6.0 - 2.0 * D2) * D7 * 2.0 * exp2 ;
|
||
|
||
pDetail->ddZdD += pDetail->fx[50] * temp ;
|
||
|
||
// n = 52
|
||
|
||
temp = 49.0 * D6 ; pDetail->ddZdD += pDetail->fx[51] * temp ;
|
||
|
||
// n = 53
|
||
|
||
temp = -4.0 * D8 * exp2 + (7.0 - 2.0 * D2) * 7.0 * D6 * exp2 ; temp -= (7.0 - 2.0 * D2) * D8 * 2.0 * exp2 ;
|
||
pDetail->ddZdD += pDetail->fx[52] * temp ;
|
||
|
||
// n = 54
|
||
|
||
temp = -1.0 * D8 * exp1 + (8.0 - D1) * 8.0 * D7 * exp1 ; temp -= (8.0 - D1) * D8 * exp1 ;
|
||
|
||
pDetail->ddZdD += pDetail->fx[53] * temp ;
|
||
|
||
// n = 55..56
|
||
|
||
temp = -4.0 * D1 * D8 * exp2 + (8.0 - 2.0 * D2) * 8.0 * D7 * exp2 ; temp -= (8.0 - 2.0 * D2) * D8 * 2.0 * D1 * exp2 ;
|
||
|
||
pDetail->ddZdD += pDetail->fx[54] * temp ; pDetail->ddZdD += pDetail->fx[55] * temp ;
|
||
|
||
|
||
|
||
|
||
|
||
// n = 57..58
|
||
|
||
temp = -4.0 * D2 * D8 * exp2 + (9.0 - 2.0 * D2) * 9.0 * D8 * exp2 ; temp -= (9.0 - 2.0 * D2) * D2 * D8 * 2.0 * exp2 ;
|
||
|
||
pDetail->ddZdD += pDetail->fx[56] * temp ; pDetail->ddZdD += pDetail->fx[57] * temp ;
|
||
|
||
pDetail->ddZdD *= pDetail->dKp3 ;
|
||
|
||
|
||
return pDetail->ddZdD;
|
||
}
|
||
|
||
/**************************************************************************
|
||
* 函数: Detail::relativedensity()
|
||
* 参数: AGA10STRUCT *
|
||
* 返回: void
|
||
* 目的: 通过AGA 8中列出的方法计算相对密度
|
||
* 修订:
|
||
**************************************************************************/
|
||
void Detail_relativedensity(Detail* pDetail,AGA10STRUCT *ptAGA10)
|
||
{
|
||
double dBX, dZa;
|
||
const double dMWair = 28.96256;
|
||
|
||
// 计算空气的第二维里系数
|
||
dBX = -0.12527 + 5.91e-4 * ptAGA10->dTb - 6.62e-7 * ptAGA10->dTb * ptAGA10->dTb;
|
||
|
||
// 计算空气的压缩系数
|
||
dZa = 1.0 + (dBX * pDetail->dP) / (RGASKJ * ptAGA10->dTb);
|
||
|
||
// 计算理想气体和真实气体的相对密度
|
||
ptAGA10->dRD_Ideal = ptAGA10->dMrx / dMWair;
|
||
ptAGA10->dRD_Real = ptAGA10->dRD_Ideal * (dZa / ptAGA10->dZb);
|
||
}
|