/************************************************************************* * 文件: detail.c * 描述: 该文件包含实现AGA报告No.8 1994 - 详细方法的函数,以及AGA报告No.10所需的新特性 * 包含以下函数: * Detail(), ~Detail(), compositionchange(), Run(), table(), * paramdl(), chardl(), braket(), bvir(), temp(), ddetail(), * pdetail(), zdetail(), relativedensity(), dZdT(), d2ZdT2(), * dZdD() * 版本: ver 1.7 2002.11.17 * 作者: W.B. Peterson * 修订: * 版权: (c) 2002 美国天然气协会 **************************************************************************/ #include "NGCal.h" #include "Detail.h" #include #include #include /************************************************************************** * 函数: Detail::Detail() * 参数: void * 返回: * 目的: 默认构造函数; 包括初始化历史敏感变量和数据表4和6 * 修订: **************************************************************************/ Detail* Detail_Construct(void) { Detail* pDetail = (Detail*)malloc(sizeof(Detail)); if (!pDetail) return NULL; memset(pDetail, 0, sizeof(Detail)); // 初始化历史敏感变量 pDetail->dOldMixID = 0.0; pDetail->dOldPb = 0.0; pDetail->dOldTb = 0.0; pDetail->dOldPf = 0.0; pDetail->dOldTf = 0.0; // 初始化该类内部使用的气体组分数组 for (int i = 0; i < NUMBEROFCOMPONENTS; i++) pDetail->dXi[i] = 0; // 函数table()填充静态常量表 Detail_table(pDetail); return pDetail; } /************************************************************************** * 函数: Detail::compositionchange() * 参数: AGA10STRUCT * * 返回: void * 目的: 通过创建半唯一数值ID比较新组成与旧组成。虽然可能性很小,但两个连续不同的组成可能产生相同的ID * 修订: **************************************************************************/ int Detail_compositionchange(Detail* pDetail, AGA10STRUCT *ptAGA10) { double dMixID = 0.0; int i; // 为组成生成数值ID for (i = 0; i < NUMBEROFCOMPONENTS; i++) dMixID += ((i+2) * ptAGA10->adMixture[i]); // 如果与之前不同,则更新历史变量 if (dMixID != pDetail->dOldMixID) { pDetail->dOldMixID = dMixID; return true; } else { return false; } } /************************************************************************** * 函数: Detail::Run() * 参数: AGA10STRUCT * * 返回: void * 目的: 公共方法,用于协调和运行完整的计算序列 * 修订: **************************************************************************/ void Detail_Run(Detail* pDetail, AGA10STRUCT *ptAGA10) { int i; // 检查气体组成变化 bool bCompChange = Detail_compositionchange(pDetail, ptAGA10); ptAGA10->bForceUpdate = ptAGA10->bForceUpdate || bCompChange; // 分配组分ID和值 if (ptAGA10->bForceUpdate) { pDetail->iNCC = 0; for (i = 0; i < NUMBEROFCOMPONENTS; i++) { if (ptAGA10->adMixture[i] > 0.0) { pDetail->aiCID[pDetail->iNCC] = i; pDetail->dXi[pDetail->iNCC] = ptAGA10->adMixture[i]; pDetail->iNCC++; } } // 计算组成相关量 Detail_paramdl(pDetail); Detail_chardl(pDetail, ptAGA10); } // 在基础压力和温度下评估T和P相关参数 if ((fabs(ptAGA10->dPb - pDetail->dOldPb) > P_CHG_TOL) || (fabs(ptAGA10->dTb - pDetail->dOldTb) > T_CHG_TOL) || (ptAGA10->bForceUpdate)) { pDetail->dP = ptAGA10->dPb * 1.0e-6; // AGA 8内部使用MPa pDetail->dT = ptAGA10->dTb; // 计算温度相关参数 Detail_temp(pDetail); // 确定摩尔密度 Detail_ddetail(pDetail, ptAGA10); ptAGA10->dDb = pDetail->dRho; // 确定压缩系数 ptAGA10->dZb = Detail_zdetail(pDetail, pDetail->dRho); // 计算质量密度 pDetail->dRhoTP = (pDetail->dP * ptAGA10->dMrx) / (ptAGA10->dZb * RGASKJ * pDetail->dT); // 计算相对密度 Detail_relativedensity(pDetail, ptAGA10); // 将密度复制到数据结构成员 ptAGA10->dRhob = pDetail->dRhoTP; // 更新历史并清除ForceUpdate标志 pDetail->dOldTb = ptAGA10->dTb; pDetail->dOldPb = ptAGA10->dPb; ptAGA10->bForceUpdate = true; } // 使用流动条件重复该过程 pDetail->dP = ptAGA10->dPf * 1.0e-6; pDetail->dT = ptAGA10->dTf; // 检查是否需要计算温度相关参数 if ((fabs(ptAGA10->dTf - pDetail->dOldTf) > T_CHG_TOL) || (ptAGA10->bForceUpdate)) { Detail_temp(pDetail); ptAGA10->bForceUpdate = true; } // 检查是否需要计算其他参数 if ((fabs(ptAGA10->dPf - pDetail->dOldPf) > P_CHG_TOL) || (ptAGA10->bForceUpdate)) { // 确定摩尔密度 Detail_ddetail(pDetail, ptAGA10); ptAGA10->dDf = pDetail->dRho; // 确定压缩系数 ptAGA10->dZf = Detail_zdetail(pDetail, pDetail->dRho); // 计算质量密度 pDetail->dRhoTP = (pDetail->dP * ptAGA10->dMrx) / (ptAGA10->dZf * RGASKJ * pDetail->dT); ptAGA10->dRhof = pDetail->dRhoTP; // 更新历史 pDetail->dOldTf = ptAGA10->dTf; pDetail->dOldPf = ptAGA10->dPf; } // 计算传统因子Fpv if ((ptAGA10->dZb > 0.0) && (ptAGA10->dZf > 0.0)) ptAGA10->dFpv = sqrt(ptAGA10->dZb / ptAGA10->dZf); else ptAGA10->lStatus = GENERAL_CALCULATION_FAILURE; ptAGA10->bForceUpdate = false; } /************************************************************************** * 函数: Detail::table() * 参数: void * 返回: void * 目的: 构建常量表 * 修订: **************************************************************************/ void Detail_table(Detail* pDetail) { // 表4中的58个常量 - 列A(n) const double adAn[58] = { 0.153832600,1.341953000,-2.998583000,-0.048312280,0.375796500,-1.589575000,-0.053588470,0.886594630,-0.710237040,-1.471722000, 1.321850350, -0.786659250, 2.29129E-09, 0.157672400, -0.436386400, -0.044081590, -0.003433888, 0.032059050, 0.024873550, 0.073322790, -0.001600573, 0.642470600, -0.416260100, -0.066899570, 0.279179500, -0.696605100, -0.002860589, -0.008098836, 3.150547000, 0.007224479, -0.705752900, 0.534979200, -0.079314910, -1.418465000, -5.99905E-17, 0.105840200, 0.034317290, -0.007022847, 0.024955870, 0.042968180, 0.746545300, -0.291961300, 7.294616000, -9.936757000, -0.005399808, -0.243256700, 0.049870160, 0.003733797, 1.874951000, 0.002168144, -0.658716400, 0.000205518, 0.009776195, -0.020487080, 0.015573220, 0.006862415, -0.001226752, 0.002850908 }; // 表4中的58个常量 - 列Un const double adUn[58] = {0.0,0.5,1.0,3.5,-0.5,4.5,0.5,7.5,9.5,6.0,12.0,12.5,-6.0,2.0,3.0,2.0,2.0,11.0,-0.5,0.5,0.0,4.0,6.0,21.0,23.0,22.0,-1.0,-0.5,7.0,-1.0,6.0,4.0,1.0,9.0,-13.0,21.0,8.0,-0.5,0.0,2.0,7.0,9.0,22.0,23.0,1.0,9.0,3.0,8.0,23.0,1.5,5.0,-0.5,4.0,7.0,3.0,0.0,1.0,0.0 }; memcpy(pDetail->adAn, adAn, sizeof(adAn)); memcpy(pDetail->adUn, adUn, sizeof(adUn)); // 初始化表6为1.0 for (int j = 0; j < NUMBEROFCOMPONENTS; j++) { for (int k = j; k < NUMBEROFCOMPONENTS; k++) { pDetail->adTable6Eij[j][k] = 1.0; pDetail->adTable6Uij[j][k] = 1.0; pDetail->adTable6Kij[j][k] = 1.0; pDetail->adTable6Gij[j][k] = 1.0; } } // 设置表6的非1值 pDetail->adTable6Eij[0][1] = 0.971640; pDetail->adTable6Eij[0][2] = 0.960644; pDetail->adTable6Eij[0][4] = 0.994635; pDetail->adTable6Eij[0][5] = 0.708218; pDetail->adTable6Eij[0][6] = 0.931484; pDetail->adTable6Eij[0][7] = 1.170520; pDetail->adTable6Eij[0][8] = 0.990126; pDetail->adTable6Eij[0][10] = 1.019530; pDetail->adTable6Eij[0][11] = 0.989844; pDetail->adTable6Eij[0][12] = 1.002350; pDetail->adTable6Eij[0][13] = 0.999268; pDetail->adTable6Eij[0][14] = 1.107274; pDetail->adTable6Eij[0][15] = 0.880880; pDetail->adTable6Eij[0][16] = 0.880973; pDetail->adTable6Eij[0][17] = 0.881067; pDetail->adTable6Eij[0][18] = 0.881161; pDetail->adTable6Eij[1][2] = 1.022740; pDetail->adTable6Eij[1][3] = 0.970120; pDetail->adTable6Eij[1][4] = 0.945939; pDetail->adTable6Eij[1][5] = 0.746954; pDetail->adTable6Eij[1][6] = 0.902271; pDetail->adTable6Eij[1][7] = 1.086320; pDetail->adTable6Eij[1][8] = 1.005710; pDetail->adTable6Eij[1][9] = 1.021000; pDetail->adTable6Eij[1][10] = 0.946914; pDetail->adTable6Eij[1][11] = 0.973384; pDetail->adTable6Eij[1][12] = 0.959340; pDetail->adTable6Eij[1][13] = 0.945520; pDetail->adTable6Eij[2][3] = 0.925053; pDetail->adTable6Eij[2][4] = 0.960237; pDetail->adTable6Eij[2][5] = 0.849408; pDetail->adTable6Eij[2][6] = 0.955052; pDetail->adTable6Eij[2][7] = 1.281790; pDetail->adTable6Eij[2][8] = 1.500000; pDetail->adTable6Eij[2][10] = 0.906849; pDetail->adTable6Eij[2][11] = 0.897362; pDetail->adTable6Eij[2][12] = 0.726255; pDetail->adTable6Eij[2][13] = 0.859764; pDetail->adTable6Eij[2][14] = 0.855134; pDetail->adTable6Eij[2][15] = 0.831229; pDetail->adTable6Eij[2][16] = 0.808310; pDetail->adTable6Eij[2][17] = 0.786323; pDetail->adTable6Eij[2][18] = 0.765171; pDetail->adTable6Eij[3][4] = 1.022560; pDetail->adTable6Eij[3][5] = 0.693168; pDetail->adTable6Eij[3][6] = 0.946871; pDetail->adTable6Eij[3][7] = 1.164460; pDetail->adTable6Eij[3][11] = 1.013060; pDetail->adTable6Eij[3][13] = 1.005320; pDetail->adTable6Eij[4][7] = 1.034787; pDetail->adTable6Eij[4][11] = 1.004900; pDetail->adTable6Eij[6][14] = 1.008692; pDetail->adTable6Eij[6][15] = 1.010126; pDetail->adTable6Eij[6][16] = 1.011501; pDetail->adTable6Eij[6][17] = 1.012821; pDetail->adTable6Eij[6][18] = 1.014089; pDetail->adTable6Eij[7][8] = 1.100000; pDetail->adTable6Eij[7][10] = 1.300000; pDetail->adTable6Eij[7][11] = 1.300000; pDetail->adTable6Uij[0][1] = 0.886106; pDetail->adTable6Uij[0][2] = 0.963827; pDetail->adTable6Uij[0][4] = 0.990877; pDetail->adTable6Uij[0][6] = 0.736833; pDetail->adTable6Uij[0][7] = 1.156390; pDetail->adTable6Uij[0][11] = 0.992291; pDetail->adTable6Uij[0][13] = 1.003670; pDetail->adTable6Uij[0][14] = 1.302576; pDetail->adTable6Uij[0][15] = 1.191904; pDetail->adTable6Uij[0][16] = 1.205769; pDetail->adTable6Uij[0][17] = 1.219634; pDetail->adTable6Uij[0][18] = 1.233498; pDetail->adTable6Uij[1][2] = 0.835058; pDetail->adTable6Uij[1][3] = 0.816431; pDetail->adTable6Uij[1][4] = 0.915502; pDetail->adTable6Uij[1][6] = 0.993476; pDetail->adTable6Uij[1][7] = 0.408838; pDetail->adTable6Uij[1][11] = 0.993556; pDetail->adTable6Uij[2][3] = 0.969870; pDetail->adTable6Uij[2][6] = 1.045290; pDetail->adTable6Uij[2][8] = 0.900000; pDetail->adTable6Uij[2][14] = 1.066638; pDetail->adTable6Uij[2][15] = 1.077634; pDetail->adTable6Uij[2][16] = 1.088178; pDetail->adTable6Uij[2][17] = 1.098291; pDetail->adTable6Uij[2][18] = 1.108021; pDetail->adTable6Uij[3][4] = 1.065173; pDetail->adTable6Uij[3][6] = 0.971926; pDetail->adTable6Uij[3][7] = 1.616660; pDetail->adTable6Uij[3][10] = 1.250000; pDetail->adTable6Uij[3][11] = 1.250000; pDetail->adTable6Uij[3][12] = 1.250000; pDetail->adTable6Uij[3][13] = 1.250000; pDetail->adTable6Uij[6][14] = 1.028973; pDetail->adTable6Uij[6][15] = 1.033754; pDetail->adTable6Uij[6][16] = 1.038338; pDetail->adTable6Uij[6][17] = 1.042735; pDetail->adTable6Uij[6][18] = 1.046966; pDetail->adTable6Kij[0][1] = 1.003630; pDetail->adTable6Kij[0][2] = 0.995933; pDetail->adTable6Kij[0][4] = 1.007619; pDetail->adTable6Kij[0][6] = 1.000080; pDetail->adTable6Kij[0][7] = 1.023260; pDetail->adTable6Kij[0][11] = 0.997596; pDetail->adTable6Kij[0][13] = 1.002529; pDetail->adTable6Kij[0][14] = 0.982962; pDetail->adTable6Kij[0][15] = 0.983565; pDetail->adTable6Kij[0][16] = 0.982707; pDetail->adTable6Kij[0][17] = 0.981849; pDetail->adTable6Kij[0][18] = 0.980991; pDetail->adTable6Kij[1][2] = 0.982361; pDetail->adTable6Kij[1][3] = 1.007960; pDetail->adTable6Kij[1][6] = 0.942596; pDetail->adTable6Kij[1][7] = 1.032270; pDetail->adTable6Kij[2][3] = 1.008510; pDetail->adTable6Kij[2][6] = 1.007790; pDetail->adTable6Kij[2][14] = 0.910183; pDetail->adTable6Kij[2][15] = 0.895362; pDetail->adTable6Kij[2][16] = 0.881152; pDetail->adTable6Kij[2][17] = 0.867520; pDetail->adTable6Kij[2][18] = 0.854406; pDetail->adTable6Kij[3][4] = 0.986893; pDetail->adTable6Kij[3][6] = 0.999969; pDetail->adTable6Kij[3][7] = 1.020340; pDetail->adTable6Kij[6][14] = 0.968130; pDetail->adTable6Kij[6][15] = 0.962870; pDetail->adTable6Kij[6][16] = 0.957828; pDetail->adTable6Kij[6][17] = 0.952441; pDetail->adTable6Kij[6][18] = 0.948338; pDetail->adTable6Gij[0][2] = 0.807653; pDetail->adTable6Gij[0][7] = 1.957310; pDetail->adTable6Gij[1][2] = 0.982746; pDetail->adTable6Gij[2][3] = 0.370296; pDetail->adTable6Gij[2][5] = 1.673090; /* GB/T11062 的高位发热量分组分数据*/ // 初始化高热值数组 double adTableHhvMol[4][NUMBEROFCOMPONENTS] = { {892.97,0,0,1564.34,2224.01,45.074,562.94,286.63,282.8,0,2874.2,2883.82,3535.98,3542.89,4203.23,4862.87,5522.4,6182.91,6842.69,0,0}, {891.56,0,0,1562.14,2221.1,44.433,562.38,286.15,282.91,0,2870.58,2879.76,3531.68,3538.6,4198.24,4857.18,5516.01,6175.82,6834.9,0,0}, {891.09,0,0,1561.41,2220.13,44.224,562.19,285.99,282.95,0,2869.38,2878.57,3530.24,3537.17,4196.58,4855.29,5513.88,6173.46,6832.31,0,0}, {890.63,0,0,1560.69,2219.17,44.016,562.01,285.83,282.98,0,2868.2,2877.4,3528.83,3535.77,4194.95,4853.43,5511.8,6171.15,6829.77,0,0} }; // 复制到结构体成员 memcpy(pDetail->adTableHhvMol, adTableHhvMol, sizeof(adTableHhvMol)); // 初始化低热值数组 double adTableLhvMol[4][NUMBEROFCOMPONENTS] = { {802.82,0,0,1429.12,2043.71,0,517.87,241.56,282.8,0,2648.83,2658.45,3265.54,3272.45,3887.71,4502.28,5116.73,5732.17,6346.88,0,0}, {802.69,0,0,1428.84,2043.37,0,517.95,241.72,282.91,0,2648.42,2657.6,3265.08,3272,3887.21,4501.72,5116.11,5731.49,6346.14,0,0}, {802.65,0,0,1428.74,2043.23,0,517.97,241.76,282.95,0,2648.26,2657.45,3264.89,3271.83,3887.01,4501.49,5115.87,5731.22,6345.85,0,0}, {802.6,0,0,1428.64,2043.11,0,517.99,241.81,282.98,0,2648.12,2657.32,3264.73,3271.67,3886.84,4501.3,5115.66,5730.99,6345.59,0,0} }; // 复制到结构体成员 memcpy(pDetail->adTableLhvMol, adTableLhvMol, sizeof(adTableLhvMol)); } /************************************************************************** * 函数: Detail::paramdl() * 参数: void * 返回: void * 目的: 设置特性和二元交互参数 * 修订: **************************************************************************/ void Detail_paramdl(Detail* pDetail) { // 表5参数 const double adTable5Mri[21] = { 16.0430, 28.0135, 44.0100, 30.0700, 44.0970, 18.0153, 34.0820, 2.0159, 28.0100, 31.9988, 58.1230, 58.1230, 72.1500, 72.1500, 86.1770, 100.2040,114.2310,128.2580,142.2850,4.0026, 39.9480 }; const double adTable5Ei[21] = {151.318300, 99.737780, 241.960600, 244.166700, 298.118300, 514.015600, 296.355000, 26.957940, 105.534800, 122.766700, 324.068900, 337.638900, 365.599900, 370.682300, 402.636293, 427.722630, 450.325022, 470.840891, 489.558373, 2.610111, 119.629900 }; const double adTable5Ki[21] = {0.4619255, 0.4479153, 0.4557489, 0.5279209, 0.5837490, 0.3825868, 0.4618263, 0.3514916, 0.4533894, 0.4186954, 0.6406937, 0.6341423, 0.6738577, 0.6798307, 0.7175118, 0.7525189, 0.7849550, 0.8152731, 0.8437826, 0.3589888, 0.4216551 }; const double adTable5Gi[21] = {0.000000,0.027815,0.189065,0.079300,0.141239, 0.332500,0.088500,0.034369,0.038953,0.021000, 0.256692,0.281835,0.332267,0.366911,0.289731, 0.337542,0.383381,0.427354,0.469659,0.000000, 0.000000 }; // 初始化表5参数为零 for (int j = 0; j < NUMBEROFCOMPONENTS; j++) { pDetail->adTable5Qi[j] = 0.0; pDetail->adTable5Fi[j] = 0.0; pDetail->adTable5Si[j] = 0.0; pDetail->adTable5Wi[j] = 0.0; } // 设置例外值 pDetail->adTable5Qi[2] = 0.690000; pDetail->adTable5Qi[5] = 1.067750; pDetail->adTable5Qi[6] = 0.633276; pDetail->adTable5Fi[7] = 1.0000; pDetail->adTable5Si[5] = 1.5822; pDetail->adTable5Si[6] = 0.3900; pDetail->adTable5Wi[5] = 1.0000; // 为非零组分设置特性参数 for (int j= pDetail->iNCC-1; j >= 0; j--) { pDetail->dMri[j] = adTable5Mri[ pDetail->aiCID[j]]; pDetail->dKi[j] = adTable5Ki[ pDetail->aiCID[j]]; } for (int j=0; j < pDetail->iNCC; j++) { pDetail->dGi[j] = adTable5Gi[ pDetail->aiCID[j]]; pDetail->dEi[j] = adTable5Ei[ pDetail->aiCID[j]]; } for (int j=0; j < pDetail->iNCC; j++) { pDetail->dQi[j] = pDetail->adTable5Qi[pDetail->aiCID[j]]; pDetail->dFi[j] = 0.0; if ( pDetail->aiCID[j] == 7) pDetail->dFi[j] = pDetail->adTable5Fi[7]; pDetail->dSi[j] = pDetail->adTable5Si[ pDetail->aiCID[j]]; pDetail->dWi[j] = pDetail->adTable5Wi[ pDetail->aiCID[j]]; } for (int j=0; j < pDetail->iNCC; j++) { for (int k=j; k < pDetail->iNCC; k++) { pDetail->dUij[j][k] = pDetail->adTable6Uij[ pDetail->aiCID[j]][ pDetail->aiCID[k]]; pDetail->dKij[j][k] = pDetail->adTable6Kij[ pDetail->aiCID[j]][ pDetail->aiCID[k]]; pDetail->dEij[j][k] = pDetail->adTable6Eij[ pDetail->aiCID[j]][ pDetail->aiCID[k]]; pDetail->dGij[j][k] = pDetail->adTable6Gij[ pDetail->aiCID[j]][ pDetail->aiCID[k]]; } } } /************************************************************************** * 函数: Detail::chardl() * 参数: AGA10STRUCT * * 返回: void * 目的: 计算组成相关量 * 修订: **************************************************************************/ void Detail_chardl(Detail* pDetail, AGA10STRUCT *ptAGA10) { double tmfrac = 0.0; for (int j = 0; j < pDetail->iNCC; j++) { tmfrac += pDetail->dXi[j]; } for (int j = 0; j < pDetail->iNCC; j++) { pDetail->dXi[j] /= tmfrac; } // 重置维里系数 for (int j = 0; j < 18; j++) { pDetail->adBcoef[j] = 0.0; } double k5p0 = 0.0, k2p5 = 0.0, u5p0 = 0.0, u2p5 = 0.0; pDetail->dW = 0.0; double q1p0 = 0.0; pDetail->dF = 0.0; // 计算气体分子量 ptAGA10->dMrx = 0.0; //高位发热量 ptAGA10->dHhvMol=0.0; //低位发热量 ptAGA10->dLhvMol=0.0; for (int i = 0; i < pDetail->iNCC; i++) { ptAGA10->dMrx += pDetail->dXi[i] * pDetail->dMri[i]; switch (ptAGA10->dCbtj) { case 2: ptAGA10->dHhvMol += pDetail->adTableHhvMol[0][i] * ptAGA10->adMixture[i]; ptAGA10->dLhvMol += pDetail-> adTableHhvMol[0][i] * ptAGA10->adMixture[i]; break; case 1: ptAGA10->dHhvMol += pDetail->adTableHhvMol[1][i] * ptAGA10->adMixture[i]; ptAGA10->dLhvMol += pDetail->adTableLhvMol[1][i] * ptAGA10->adMixture[i]; break; case 0: ptAGA10->dHhvMol += pDetail->adTableHhvMol[2][i] * ptAGA10->adMixture[i]; ptAGA10->dLhvMol += pDetail->adTableLhvMol[2][i] * ptAGA10->adMixture[i]; break; } k2p5 += pDetail->dXi[i] * pow(pDetail->dKi[i], 2.5); u2p5 += pDetail->dXi[i] * pow(pDetail->dEi[i], 2.5); pDetail->dW += pDetail->dXi[i] * pDetail->dGi[i]; q1p0 += pDetail->dXi[i] * pDetail->dQi[i]; pDetail->dF += pDetail->dXi[i] * pDetail->dXi[i] * pDetail->dFi[i]; } ptAGA10->dHhvMol = ptAGA10->dHhvMol / ptAGA10->dMrx; ptAGA10->dLhvMol = ptAGA10->dLhvMol / ptAGA10->dMrx; for (int i = 0; i < pDetail->iNCC; i++) { for (int j = i; j < pDetail->iNCC; j++) { double Xij = (i == j) ? pDetail->dXi[i] * pDetail->dXi[j] : 2.0 * pDetail->dXi[i] * pDetail->dXi[j]; if (pDetail->dKij[i][j] != 1.0) { double term = pow(pDetail->dKi[i] * pDetail->dKi[j], 2.5); k5p0 += Xij * (pow(pDetail->dKij[i][j], 5.0) - 1.0) * term; } if (pDetail->dUij[i][j] != 1.0) { double term = pow(pDetail->dEi[i] * pDetail->dEi[j], 2.5); u5p0 += Xij * (pow(pDetail->dUij[i][j], 5.0) - 1.0) * term; } if (pDetail->dGij[i][j] != 1.0) { double avgG = (pDetail->dGi[i] + pDetail->dGi[j]) / 2.0; pDetail->dW += Xij * (pDetail->dGij[i][j] - 1.0) * avgG; } double Eij = pDetail->dEij[i][j] * sqrt(pDetail->dEi[i] * pDetail->dEi[j]); double Gij = pDetail->dGij[i][j] * (pDetail->dGi[i] + pDetail->dGi[j]) / 2.0; double e0p5 = sqrt(Eij); double e2p0 = Eij * Eij; double e3p0 = Eij * e2p0; double e3p5 = e3p0 * e0p5; double e4p5 = Eij * e3p5; double e6p0 = e3p0 * e3p0; double e7p5 = e4p5 * Eij * e2p0; double e9p5 = e7p5 * e2p0; double e11p0 = e4p5 * e4p5 * e2p0; double e12p0 = e11p0 * Eij; double e12p5 = e12p0 * e0p5; double s3 = Xij * pow(pow(pDetail->dKi[i], 3.0) * pow(pDetail->dKi[j], 3.0), 0.5); pDetail->adBcoef[0] += s3; pDetail->adBcoef[1] += s3 * e0p5; pDetail->adBcoef[2] += s3 * Eij; pDetail->adBcoef[3] += s3 * e3p5; pDetail->adBcoef[4] += s3 * Gij / e0p5; pDetail->adBcoef[5] += s3 * Gij * e4p5; pDetail->adBcoef[6] += s3 * pDetail->dQi[i] * pDetail->dQi[j] * e0p5; pDetail->adBcoef[7] += s3 * pDetail->dSi[i] * pDetail->dSi[j] * e7p5; pDetail->adBcoef[8] += s3 * pDetail->dSi[i] * pDetail->dSi[j] * e9p5; pDetail->adBcoef[9] += s3 * pDetail->dWi[i] * pDetail->dWi[j] * e6p0; pDetail->adBcoef[10] += s3 * pDetail->dWi[i] * pDetail->dWi[j] * e12p0; pDetail->adBcoef[11] += s3 * pDetail->dWi[i] * pDetail->dWi[j] * e12p5; pDetail->adBcoef[12] += s3 * pDetail->dFi[i] * pDetail->dFi[j] / e6p0; pDetail->adBcoef[13] += s3 * e2p0; pDetail->adBcoef[14] += s3 * e3p0; pDetail->adBcoef[15] += s3 * pDetail->dQi[i] * pDetail->dQi[j] * e2p0; pDetail->adBcoef[16] += s3 * e2p0; pDetail->adBcoef[17] += s3 * e11p0; } } // 应用An系数 for (int i = 0; i < 18; i++) { pDetail->adBcoef[i] *= pDetail->adAn[i]; } // 计算混合物参数 pDetail->dKp3 = pow(k5p0 + pow(k2p5, 2.0), 0.6); pDetail->dU = pow(u5p0 + pow(u2p5, 2.0), 0.2); pDetail->dQp2 = q1p0 * q1p0; } /************************************************************************** * 函数: Detail::bvir() * 参数: void * 返回: void * 目的: 计算第二维里系数及其偏导数 * 修订: **************************************************************************/ void Detail_bvir(Detail* pDetail) { pDetail->dB = pDetail->ddBdT = pDetail->dd2BdT2 = 0.0; double t = pDetail->dT; double t0p5 = sqrt(t); double t2p0 = t * t; double t3p0 = t * t2p0; double t3p5 = t3p0 * t0p5; double t4p5 = t * t3p5; double t6p0 = t3p0 * t3p0; double t11p0 = t4p5 * t4p5 * t2p0; double t7p5 = t6p0 * t * t0p5; double t9p5 = t7p5 * t2p0; double t12p0 = t9p5 * t0p5 * t2p0; double t12p5 = t12p0 * t0p5; double t1p5 = t * t0p5; double t4p0 = t2p0 * t2p0; double Bx[18]; for (int i = 0; i < 18; i++) { // double un = pDetail->adUn[i]; // double an = pDetail->adAn[i]; double bcoef = pDetail->adBcoef[i]; switch (i) { case 0: Bx[i] = bcoef; break; case 1: Bx[i] = bcoef / t0p5; break; case 2: Bx[i] = bcoef / t; break; case 3: Bx[i] = bcoef / t3p5; break; case 4: Bx[i] = bcoef * t0p5; break; case 5: Bx[i] = bcoef / t4p5; break; case 6: Bx[i] = bcoef / t0p5; break; case 7: Bx[i] = bcoef / t7p5; break; case 8: Bx[i] = bcoef / t9p5; break; case 9: Bx[i] = bcoef / t6p0; break; case 10: Bx[i] = bcoef / t12p0; break; case 11: Bx[i] = bcoef / t12p5; break; case 12: Bx[i] = bcoef * t6p0; break; case 13: Bx[i] = bcoef / t2p0; break; case 14: Bx[i] = bcoef / t3p0; break; case 15: Bx[i] = bcoef / t2p0; break; case 16: Bx[i] = bcoef / t2p0; break; case 17: Bx[i] = bcoef / t11p0; break; default: Bx[i] = 0.0; } pDetail->dB += Bx[i]; } // 计算一阶导数 for (int i = 0; i < 18; i++) { if (pDetail->adUn[i] != 0.0) { Bx[i] *= pDetail->adUn[i] / t; } } for (int i = 0; i < 18; i++) { if (pDetail->adUn[i] != 0.0) { pDetail->ddBdT -= Bx[i]; } } // 计算二阶导数 for (int i = 0; i < 18; i++) { if (pDetail->adUn[i] != 0.0 && pDetail->adUn[i] != -1.0) { Bx[i] *= (pDetail->adUn[i] + 1.0) / t; } } for (int i = 0; i < 18; i++) { if (pDetail->adUn[i] != 0.0 && pDetail->adUn[i] != -1.0) { pDetail->dd2BdT2 += Bx[i] ; } } } /************************************************************************** * 函数: Detail::temp() * 参数: void * 返回: void * 目的: 计算温度相关量 * 修订: **************************************************************************/ void Detail_temp(Detail* pDetail) { Detail_bvir(pDetail); double tr = pDetail->dT / pDetail->dU; double tr0p5 = sqrt(tr); double tr1p5 = tr * tr0p5; double tr2p0 = tr * tr; double tr3p0 = tr * tr2p0; double tr4p0 = tr * tr3p0; double tr5p0 = tr * tr4p0; double tr6p0 = tr * tr5p0; double tr7p0 = tr * tr6p0; double tr8p0 = tr * tr7p0; double tr9p0 = tr * tr8p0; double tr11p0 = tr6p0 * tr5p0; double tr13p0 = tr6p0 * tr7p0; double tr21p0 = tr9p0 * tr9p0 * tr3p0; double tr22p0 = tr * tr21p0; double tr23p0 = tr * tr22p0; for (int i = 12; i < 58; i++) { double un = pDetail->adUn[i]; double an = pDetail->adAn[i]; double tr_exp = pow(tr, -un); pDetail->adFn[i] = an * tr_exp; } } /************************************************************************** * 函数: Detail::ddetail() * 参数: AGA10STRUCT * * 返回: void * 目的: 计算密度 * 修订: **************************************************************************/ void Detail_ddetail(Detail* pDetail,AGA10STRUCT *ptAGA10) { int imax, i; double epsp, epsr, epsmin; double x1, x2, x3, y1, y2, y3; double delx, delprv, delmin, delbis, xnumer, xdenom, sgndel; double y2my3, y3my1, y1my2, boundn; // 初始化收敛容差 imax = 150; epsp = 1.e-6; epsr = 1.e-6; epsmin = 1.e-7; pDetail->dRho =0.0; // 调用子程序braket来包围密度解 Detail_braket(pDetail,ptAGA10); // 检查从子程序braket返回的"lStatus"值 if (ptAGA10->lStatus == MAX_NUM_OF_ITERATIONS_EXCEEDED || ptAGA10->lStatus == NEGATIVE_DENSITY_DERIVATIVE) { return; } // 设置开始Brent方法 // x是自变量,y是因变量 // delx是当前迭代中x的变化 // delprv是前一次迭代中x的变化 x1 = pDetail->dRhoL; x2 = pDetail->dRhoH; y1 = pDetail->dPRhoL - pDetail->dP; y2 = pDetail->dPRhoH - pDetail->dP; delx = x1 - x2; delprv = delx; // 解被包围在x1和x2之间 // 引入第三个点x3用于二次插值 x3 = x1; y3 = y1; for (i=0; i < imax; i++) { // y3必须与y2符号相反,所以解在x2,x3之间 if (y2 * y3 > 0.0) { x3 = x1; y3 = y1; delx = x1 - x2; delprv = delx; } // y2必须是y最接近y=0.0的值,然后x2new=x2old+delx if (fabs(y3) < fabs(y2)) { x1 = x2; x2 = x3; x3 = x1; y1 = y2; y2 = y3; y3 = y1; } // delmin是未收敛迭代允许的最小步长 delmin = epsmin * fabs(x2) ; // sgndel,x2变化的符号是delbis的符号 delbis = 0.5 * (x3 - x2) ; if (fabs(delprv) < delmin || fabs(y1) < fabs(y2)) { // use bisection delx = delbis; delprv = delbis; } else { if (x3 != x1) { // use inverse quadratic interpolation y2my3 = y2 - y3; y3my1 = y3 - y1; y1my2 = y1 - y2; xdenom = -(y1my2) * (y2my3) * (y3my1); xnumer = x1 * y2 * y3 * (y2my3) + x2 * y3 * y1 * (y3my1) + x3 * y1 * y2 * (y1my2) - x2 * xdenom; } else { // use inverse linear interpolation xnumer = (x2 - x1) * y2; xdenom = y1 - y2; } // before calculating delx check delx=xnumer/xdenom is not out of bounds if (2.0 * fabs(xnumer) < fabs(delprv * xdenom)) { // procedure converging, use interpolation delprv = delx; delx = xnumer / xdenom; } else { // procedure diverging, use bisection delx = delbis; delprv = delbis; } } if ((fabs(y2) < epsp * pDetail->dP) && (fabs(delx) < epsr * fabs(x2))) { pDetail->dRho = x2 + delx; return; } if (fabs(delx) < delmin) { sgndel = delbis / fabs(delbis); delx = 1.0000009 * sgndel * delmin; delprv = delx; } // 最终检查以确保新的x2在旧x2和x3的范围内 // boundn为负表示新的x2在旧x2和x3的范围内 boundn = delx * (x2 + delx - x3); if (boundn > 0.0) { // 过程超出界限,使用二分法 delx = delbis; delprv = delbis; } // 为下一次迭代重新标记变量 // x1new = x2old, y1new=y2old x1 = x2; y1 = y2; // 下一次迭代的x2, y2值 x2 = x2 + delx; Detail_pdetail(pDetail,x2); y2 = pDetail->dPCalc - pDetail->dP; } // ddetail: 超过最大迭代次数 ptAGA10->lStatus=MAX_NUM_OF_ITERATIONS_EXCEEDED; pDetail->dRho = x2; } /************************************************************************** * 函数: Detail::braket() * 参数: AGA10STRUCT * * 返回: void * 目的: 包围密度解 * 修订: **************************************************************************/ void Detail_braket(Detail* pDetail,AGA10STRUCT *ptAGA10) { // 函数局部变量 int imax, it; double del, rhomax, videal; double rho1, rho2, p1, p2; // 初始化 imax = 200; rho1 = 0.0; p1 = 0.0; rhomax = 1.0 / pDetail->dKp3; if (pDetail->dT > 1.2593 * pDetail->dU) rhomax = 20.0 * rhomax; videal = RGASKJ * pDetail->dT / pDetail->dP; if (fabs(pDetail->dB) < (0.167 * videal)) { rho2 = 0.95 / (videal + pDetail->dB); } else { rho2 = 1.15 / videal; } del = rho2 / 20.0; // 开始迭代密度搜索循环 for (it = 0; it < imax; it++) { if (rho2 > rhomax && ptAGA10->lStatus != MAX_DENSITY_IN_BRAKET_EXCEEDED) { // braket中的密度超过最大允许密度 ptAGA10->lStatus = MAX_DENSITY_IN_BRAKET_EXCEEDED; del = 0.01 * (rhomax - rho1) + (pDetail->dP / (RGASKJ * pDetail->dT)) / 20.0; rho2 = rho1 + del; continue; } // 计算密度rho2处的压力p2 Detail_pdetail(pDetail,rho2); p2 = pDetail->dPCalc; // 测试p2相对于p和相对于p1的值 if (p2 > pDetail->dP) { // 密度根被包围(p1p) pDetail->dRhoL = rho1; pDetail->dPRhoL = p1; pDetail->dRhoH = rho2; pDetail->dPRhoH = p2; ptAGA10->lStatus = NORMAL; return; } else if (p2 > p1) { if (ptAGA10->lStatus == MAX_DENSITY_IN_BRAKET_EXCEEDED) del *= 2.0; rho1 = rho2; p1 = p2; rho2 = rho1 + del; continue; } else { // lStatus= NEGATIVE_DENSITY_DERIVATIVE表示 // 压力有负的密度导数,因为p2小于某个先前的压力 ptAGA10->lStatus = NEGATIVE_DENSITY_DERIVATIVE; pDetail->dRho = rho1; return; } } // 如果从底部退出,则超过最大迭代次数 ptAGA10->lStatus = MAX_NUM_OF_ITERATIONS_EXCEEDED; pDetail->dRho = rho2; return; } /************************************************************************** * 函数: Detail::pdetail() * 参数: double * 返回: void * 目的: 给定D和T计算压力。调用zdetail() * 修订: **************************************************************************/ void Detail_pdetail(Detail* pDetail,double dD) { pDetail->dPCalc = Detail_zdetail(pDetail,dD) * dD * RGASKJ * pDetail->dT; } /************************************************************************** * 函数: Detail::zdetail() * 参数: double * 返回: void * 目的: 计算压缩性 * 修订: **************************************************************************/ double Detail_zdetail(Detail* pDetail,double d) { // 函数局部变量 double D1, D2, D3, D4, D5, D6, D7, D8, D9, exp1, exp2, exp3, exp4; // 约化密度的幂 D1 = pDetail->dKp3 * d; D2 = D1 * D1; D3 = D2 * D1; D4 = D3 * D1; D5 = D4 * D1; D6 = D5 * D1; D7 = D6 * D1; D8 = D7 * D1; D9 = D8 * D1; exp1 = exp(-D1); exp2 = exp(-D2); exp3 = exp(-D3); exp4 = exp(-D4); // 以下Z的表达式从AGA8的FORTRAN示例中采用 pDetail->dZ = 1.0 + pDetail->dB * d +pDetail->adFn[12] * D1 * (exp3 - 1.0 - 3.0 * D3 * exp3) +(pDetail->adFn[13] + pDetail->adFn[14] + pDetail->adFn[15]) * D1 * (exp2 - 1.0 - 2.0 * D2 * exp2) +(pDetail->adFn[16] + pDetail->adFn[17]) * D1 * (exp4 - 1.0 - 4.0 * D4 * exp4) +(pDetail->adFn[18] + pDetail->adFn[19]) * D2 * 2.0 +(pDetail->adFn[20] + pDetail->adFn[21] + pDetail->adFn[22]) * D2 * (2.0 - 2.0 * D2) * exp2 +(pDetail->adFn[23] + pDetail->adFn[24] + pDetail->adFn[25]) * D2 * (2.0 - 4.0 * D4) * exp4 +pDetail->adFn[26] * D2 * (2.0 - 4.0 * D4) * exp4 +pDetail->adFn[27] * D3 * 3.0 +(pDetail->adFn[28] + pDetail->adFn[29]) * D3 * (3.0 - D1) * exp1 +(pDetail->adFn[30] + pDetail->adFn[31]) * D3 * (3.0 - 2.0 * D2) * exp2 +(pDetail->adFn[32] + pDetail->adFn[33]) * D3 * (3.0 - 3.0 * D3) * exp3 +(pDetail->adFn[34] + pDetail->adFn[35] + pDetail->adFn[36]) * D3 * (3.0 - 4.0 * D4) * exp4 +(pDetail->adFn[37] + pDetail->adFn[38]) * D4 * 4.0 +(pDetail->adFn[39] + pDetail->adFn[40] + pDetail->adFn[41]) * D4 * (4.0 - 2.0 * D2) * exp2 +(pDetail->adFn[42] + pDetail->adFn[43]) * D4 * (4.0 - 4.0 * D4) * exp4 +pDetail->adFn[44] * D5 * 5.0 +(pDetail->adFn[45] + pDetail->adFn[46]) * D5 * (5.0 - 2.0 * D2) * exp2 +(pDetail->adFn[47] + pDetail->adFn[48]) * D5 * (5.0 - 4.0 * D4) * exp4 +pDetail->adFn[49] * D6 * 6.0 +pDetail->adFn[50] * D6 * (6.0 - 2.0 * D2) * exp2 +pDetail->adFn[51] * D7 * 7.0 +pDetail->adFn[52] * D7 * (7.0 - 2.0 * D2) * exp2 +pDetail->adFn[53] * D8 * (8.0 - D1) * exp1 +(pDetail->adFn[54] + pDetail->adFn[55]) * D8 * (8.0 - 2.0 * D2) * exp2 +(pDetail->adFn[56] + pDetail->adFn[57]) * D9 * (9.0 - 2.0 * D2) * exp2; return pDetail->dZ; } /************************************************************************** * 函数: Detail::dZdT() * 参数: double * 返回: double * 目的: 计算Z对T的一阶偏导数 * 修订: **************************************************************************/ double Detail_dZdT(Detail* pDetail,double d) { // 函数局部变量 double tmp; int i; double D1, D2, D3, D4, D5, D6, D7, D8, exp1, exp2, exp3, exp4; // 设置约化密度的幂 D1 = pDetail->dKp3 * d; D2 = D1 * D1; D3 = D2 * D1; D4 = D3 * D1; D5 = D4 * D1; D6 = D5 * D1; D7 = D6 * D1; D8 = D7 * D1; // D9 = D8 * D1; exp1 = exp(-D1); exp2 = exp(-D2); exp3 = exp(-D3); exp4 = exp(-D4); // 从我们已经计算的系数(An[n])创建项uC*T^-(un+1) for (i=12; i < 58; i++) { if (pDetail->adUn[i] && pDetail->adFn[i]) { pDetail-> fx[i] = (pDetail->adFn[i] * pDetail->adUn[i] * D1) / pDetail->dT; } else { pDetail->fx[i] = 0.0; } } // 方程的初始部分 pDetail-> ddZdT = d * pDetail->ddBdT; // n=13对氢以外的所有物质评估为零,对氢fn=1 if (pDetail->dF) pDetail->ddZdT += pDetail->fx[12] - (pDetail->fx[12] * (1.0 - 3.0 * D3) * exp3); tmp = (1.0 - 2.0 * D2) * exp2; pDetail->ddZdT += (pDetail->fx[13] - (pDetail->fx[13] * tmp)); pDetail->ddZdT += pDetail->fx[14] - (pDetail->fx[14] * tmp); pDetail->ddZdT += pDetail->fx[15] - (pDetail->fx[15] * tmp); tmp = (1.0 - 4.0 * D4) * exp4; pDetail->ddZdT += pDetail->fx[16] - (pDetail->fx[16] * tmp); pDetail->ddZdT += pDetail->fx[17] - (pDetail->fx[17] * tmp); pDetail-> ddZdT = pDetail->ddZdT - (pDetail->fx[18] + pDetail->fx[19]) * D1 * 2.0 -(pDetail->fx[21] + pDetail->fx[22]) * D1 * (2.0 - 2.0 * D2) * exp2 -(pDetail->fx[23] + pDetail->fx[24] + pDetail->fx[25]) * D1 * (2.0 - 4.0 * D4) * exp4 -pDetail->fx[26] * D1 * (2.0 - 4.0 * D4) * exp4 -pDetail->fx[27] * D2 * 3.0 -(pDetail->fx[28] +pDetail-> fx[29]) * D2 * (3.0 - D1) * exp1 -(pDetail->fx[30] + pDetail->fx[31]) * D2 * (3.0 - 2.0 * D2) * exp2 -(pDetail->fx[32] + pDetail->fx[33]) * D2 * (3.0 - 3.0 * D3) * exp3 -(pDetail->fx[34] + pDetail->fx[35] + pDetail->fx[36]) * D2 * (3.0 - 4.0 * D4) * exp4 -pDetail->fx[37] * D3 * 4.0 -(pDetail->fx[39] + pDetail->fx[40] + pDetail->fx[41]) * D3 * (4.0 - 2.0 * D2) * exp2 -(pDetail->fx[42] + pDetail->fx[43]) * D3 * (4.0 - 4.0 * D4) * exp4 -pDetail->fx[44] * D4 * 5.0 -(pDetail->fx[45] + pDetail->fx[46]) * D4 * (5.0 - 2.0 * D2) * exp2 -(pDetail->fx[47] + pDetail->fx[48]) * D4 * (5.0 - 4.0 * D4) * exp4 -pDetail->fx[49] * D5 * 6.0 -pDetail->fx[50] * D5 * (6.0 - 2.0 * D2) * exp2 -pDetail->fx[51] * D6 * 7.0 -pDetail->fx[52] * D6 * (7.0 - 2.0 * D2) * exp2 -pDetail->fx[53] * D7 * (8.0 - D1) * exp1 -pDetail->fx[54] * D7 * (8.0 - 2.0 * D2) * exp2 -pDetail->fx[56] * D8 * (9.0 - 2.0 * D2) * exp2; return pDetail->ddZdT; } /************************************************************************** * 函数: Detail::d2ZdT2() * 参数: double * 返回: double * 目的: 计算Z对T的二阶偏导数 * 修订: **************************************************************************/ double Detail_d2ZdT2(Detail* pDetail,double d) { // 函数局部变量 double tmp; int i; double D1, D2, D3, D4, D5, D6, D7, D8, exp1, exp2, exp3, exp4; // 设置约化密度的幂 D1 = pDetail->dKp3 * d; D2 = D1 * D1; D3 = D2 * D1; D4 = D3 * D1; D5 = D4 * D1; D6 = D5 * D1; D7 = D6 * D1; D8 = D7 * D1; //D9 = D8 * D1; exp1 = exp(-D1); exp2 = exp(-D2); exp3 = exp(-D3); exp4 = exp(-D4); // 从我们已经计算的系数(An[n])创建项uC*T^-(un+1) for (i=12; i < 58; i++) { if (pDetail->adUn[i] && pDetail->adFn[i]) { pDetail->fx[i] = (pDetail->adFn[i] * D1 * pDetail->adUn[i] * (pDetail->adUn[i] + 1.0)) / (pDetail->dT * pDetail->dT); } else { pDetail->fx[i] = 0.0; } } // 方程的初始部分 pDetail->dd2ZdT2 = d * pDetail->dd2BdT2; // n=13对氢以外的所有物质评估为零,对氢fn=1 if (pDetail->dF) pDetail->dd2ZdT2 += pDetail->fx[12] - (pDetail->fx[12] * (1.0 - 3.0 * D3) * exp3); tmp = (1.0 - 2.0 * D2) * exp2; pDetail->dd2ZdT2 += -pDetail->fx[13] + (pDetail->fx[13] * tmp); pDetail->dd2ZdT2 += -pDetail->fx[14] + (pDetail->fx[14] * tmp); pDetail->dd2ZdT2 += -pDetail->fx[15] + (pDetail->fx[15] * tmp); tmp = (1.0 - 4.0 * D4) * exp4; pDetail->dd2ZdT2 += -pDetail->fx[16] + (pDetail->fx[16] * tmp); pDetail->dd2ZdT2 += -pDetail->fx[17] + (pDetail->fx[17] * tmp); pDetail->dd2ZdT2 = pDetail->dd2ZdT2 + (pDetail->fx[18] + pDetail->fx[19]) * D1 * 2.0 +(pDetail->fx[21] + pDetail->fx[22]) * D1 * (2.0 - 2.0 * D2) * exp2 +(pDetail->fx[23] + pDetail->fx[24] + pDetail->fx[25]) * D1 * (2.0 - 4.0 * D4) * exp4 +pDetail->fx[26] * D1 * (2.0 - 4.0 * D4) * exp4 +pDetail->fx[27] * D2 * 3.0 +(pDetail->fx[28] + pDetail->fx[29]) * D2 * (3.0 - D1) * exp1 +(pDetail->fx[30] + pDetail->fx[31]) * D2 * (3.0 - 2.0 * D2) * exp2 +(pDetail->fx[32] + pDetail->fx[33]) * D2 * (3.0 - 3.0 * D3) * exp3 +(pDetail->fx[34] + pDetail->fx[35] + pDetail->fx[36]) * D2 * (3.0 - 4.0 * D4) * exp4 +pDetail->fx[37] * D3 * 4.0 +(pDetail->fx[39] + pDetail->fx[40] + pDetail->fx[41]) * D3 * (4.0 - 2.0 * D2) * exp2 +(pDetail->fx[42] + pDetail->fx[43]) * D3 * (4.0 - 4.0 * D4) * exp4 +pDetail->fx[44] * D4 * 5.0 +(pDetail->fx[45] + pDetail->fx[46]) * D4 * (5.0 - 2.0 * D2) * exp2 +(pDetail->fx[47] + pDetail->fx[48]) * D4 * (5.0 - 4.0 * D4) * exp4 +pDetail->fx[49] * D5 * 6.0 +pDetail->fx[50] * D5 * (6.0 - 2.0 * D2) * exp2 +pDetail->fx[51] * D6 * 7.0 +pDetail->fx[52] * D6 * (7.0 - 2.0 * D2) * exp2 +pDetail->fx[53] * D7 * (8.0 - D1) * exp1 +pDetail->fx[54] * D7 * (8.0 - 2.0 * D2) * exp2 +pDetail->fx[56] * D8 * (9.0 - 2.0 * D2) * exp2; return pDetail->dd2ZdT2; } /************************************************************************** * 函数: Detail::dZdD() * 参数: double * 返回: double * 目的: 计算Z对D的一阶偏导数 * 修订: **************************************************************************/ double Detail_dZdD(Detail* pDetail,double d) { double temp, temp1, temp2, temp3; int i; double D1, D2, D3, D4, D5, D6, D7, D8,exp1, exp2, exp3, exp4; // 设置约化密度的幂 D1 = pDetail->dKp3 * d; D2 = D1 * D1; D3 = D2 * D1; D4 = D3 * D1; D5 = D4 * D1; D6 = D5 * D1; D7 = D6 * D1; D8 = D7 * D1; //D9 = D8 * D1; exp1 = exp(-D1); exp2 = exp(-D2); exp3 = exp(-D3); exp4 = exp(-D4); // 从我们已经计算的系数(An[n])创建项uC*T^-(un+1) for (i=12; i < 58; i++) { pDetail->fx[i] = pDetail->adFn[i]; } // 方程的初始部分 pDetail->ddZdD = pDetail->dB / pDetail->dKp3; // 评估所有剩余项,尽可能简化 // n=13对氢以外的所有物质评估为零,对氢fn=1 if (pDetail->dF) { temp1 = -9.0 * D3 * exp3; temp2 = (1.0 - 3.0 * D3) * exp3; temp3 = -temp2 * 3.0 * D6; temp = temp1 + temp2 + temp3; pDetail->ddZdD += -pDetail->fx[12] + pDetail->fx[12] * temp; } //n = 14..16 temp1 = -4.0 * D2 * exp2 ; temp2 = (1.0 - 2.0 * D2) * exp2 ; temp3 = -temp2 * 2.0 * D2; temp = temp1 + temp2 + temp3 ; pDetail->ddZdD += -pDetail->fx[13] + pDetail->fx[13] * temp ; pDetail->ddZdD += -pDetail->fx[14] + pDetail->fx[14] * temp ; pDetail->ddZdD += -pDetail->fx[15] + pDetail->fx[15] * temp ; // n = 17..18 temp1 = -16.0 * D4 * exp4 ; temp2 = (1.0 - 4.0 * D4) * exp4 ; temp3 = -temp2 * 4.0 * D4 ; temp = temp1 + temp2 + temp3 ; pDetail->ddZdD += -pDetail->fx[16] + pDetail->fx[16] * temp ; pDetail->ddZdD += -pDetail->fx[17] + pDetail->fx[17] * temp ; // n = 19..20 temp = 4.0 * D1 ; pDetail->ddZdD += pDetail->fx[18] * temp ; pDetail->ddZdD += pDetail->fx[19] * temp ; // n = 21..23 temp1 = -4.0 * D3 * exp2 ; temp2 = (2.0 - 2.0 * D2) * 2.0 * D1 * exp2 ; temp3 = -temp2 * D2; temp = temp1 + temp2 + temp3 ; pDetail->ddZdD += pDetail->fx[20] * temp ; pDetail->ddZdD += pDetail->fx[21] * temp ; pDetail->ddZdD += pDetail->fx[22] * temp ; // n = 24..27 temp1 = -16.0 * D5 * exp4 ; temp2 = (2.0 - 4.0 * D4) * 2.0 * D1 * exp4 ; temp3 = -temp2 * 2.0 * D4 ; temp = temp1 + temp2 + temp3 ; pDetail->ddZdD += pDetail->fx[23] * temp ; pDetail->ddZdD += pDetail->fx[24] * temp ; pDetail->ddZdD += pDetail->fx[25] * temp ; pDetail->ddZdD += pDetail->fx[26] * temp ; // n = 28 temp = 9.0 * D2 ; pDetail->ddZdD += pDetail->fx[27] * temp ; // n = 29..30 temp = -D3 * exp1 + (3.0 - D1) * 3.0 * D2 * exp1 ; temp -= (3.0 - D1) * D3 * exp1 ; pDetail->ddZdD += pDetail->fx[28] * temp ; pDetail->ddZdD += pDetail->fx[29] * temp ; // n = 31..32 temp1 = -4.0 * D4 * exp2 ; temp2 = (3.0 - 2.0 * D2) * 3.0 * D2 * exp2 ; temp3 = -(3.0 - 2.0 * D2) * 2.0 * D4 * exp2 ; temp = temp1 + temp2 + temp3 ; pDetail->ddZdD += pDetail->fx[30] * temp ; pDetail->ddZdD += pDetail->fx[31] * temp ; // n = 33..34 temp1 = -9.0 * D5 * exp3 ; temp2 = (3.0 - 3.0 * D3) * 3.0 * D2 * exp3 ; temp3 = -(3.0 - 3.0 * D3) * 3.0 * D5 * exp3 ; temp = temp1 + temp2 + temp3 ; pDetail->ddZdD += pDetail->fx[32] * temp ; pDetail->ddZdD += pDetail->fx[33] * temp ; // n = 35..37 temp1 = -16.0 * D6 * exp4 ; temp2 = (3.0 - 4.0 * D4) * 3.0 * D2 * exp4 ; temp3 = -(3.0 - 4.0 * D4) * D6 * 4.0 * exp4 ; temp = temp1 + temp2 + temp3 ; pDetail->ddZdD += pDetail->fx[34] * temp ; pDetail->ddZdD += pDetail->fx[35] * temp ; pDetail->ddZdD += pDetail->fx[36] * temp ; //n = 38..39 temp = 16.0 * D3 ; pDetail->ddZdD += pDetail->fx[37] * temp ; pDetail->ddZdD += pDetail->fx[38] * temp ; //n = 40..42 temp1 = -4.0 * D5 * exp2 ; temp2 = (4.0 - 2.0 * D2) * 4.0 * D3 * exp2 ; temp3 = -(4.0 - 2.0 * D2) * 2.0 * D5 * exp2 ; temp = temp1 + temp2 + temp3 ; pDetail->ddZdD += pDetail->fx[39] * temp ; pDetail->ddZdD += pDetail->fx[40] * temp ; pDetail->ddZdD += pDetail->fx[41] * temp ; // n = 43..44 temp = -16.0 * D7 * exp4 + (4.0 - 4.0 * D4) * 4.0 * D3 * exp4 ; temp -= (4.0 - 4.0 * D4) * D7 * 4.0 * exp4 ; pDetail->ddZdD += pDetail->fx[42] * temp ; pDetail->ddZdD += pDetail->fx[43] * temp ; // n = 45 temp = 25.0 * D4 ; pDetail->ddZdD += pDetail->fx[44] * temp ; // n = 46..47 temp = -4.0 * D6 * exp2 + (5.0 - 2.0 * D2) * 5.0 * D4 * exp2 ; temp -= (5.0 - 2.0 * D2) * D6 * 2.0 * exp2 ; pDetail->ddZdD += pDetail->fx[45] * temp ; pDetail->ddZdD += pDetail->fx[46] * temp ; // n = 48..49 temp = -16.0 * D8 * exp4 + (5.0 - 4.0 * D4) * 5.0 * D4 * exp4 ; temp -= (5.0 - 4.0 * D4) * D8 * 4.0 * exp4 ; pDetail->ddZdD += pDetail->fx[47] * temp ; pDetail->ddZdD += pDetail->fx[48] * temp ; // n = 50 temp = 36.0 * D5 ; pDetail->ddZdD += pDetail->fx[49] * temp ; // n = 51 temp = -4.0 * D7 * exp2 + (6.0 - 2.0 * D2) * 6.0 * D5 * exp2 ; temp -= (6.0 - 2.0 * D2) * D7 * 2.0 * exp2 ; pDetail->ddZdD += pDetail->fx[50] * temp ; // n = 52 temp = 49.0 * D6 ; pDetail->ddZdD += pDetail->fx[51] * temp ; // n = 53 temp = -4.0 * D8 * exp2 + (7.0 - 2.0 * D2) * 7.0 * D6 * exp2 ; temp -= (7.0 - 2.0 * D2) * D8 * 2.0 * exp2 ; pDetail->ddZdD += pDetail->fx[52] * temp ; // n = 54 temp = -1.0 * D8 * exp1 + (8.0 - D1) * 8.0 * D7 * exp1 ; temp -= (8.0 - D1) * D8 * exp1 ; pDetail->ddZdD += pDetail->fx[53] * temp ; // n = 55..56 temp = -4.0 * D1 * D8 * exp2 + (8.0 - 2.0 * D2) * 8.0 * D7 * exp2 ; temp -= (8.0 - 2.0 * D2) * D8 * 2.0 * D1 * exp2 ; pDetail->ddZdD += pDetail->fx[54] * temp ; pDetail->ddZdD += pDetail->fx[55] * temp ; // n = 57..58 temp = -4.0 * D2 * D8 * exp2 + (9.0 - 2.0 * D2) * 9.0 * D8 * exp2 ; temp -= (9.0 - 2.0 * D2) * D2 * D8 * 2.0 * exp2 ; pDetail->ddZdD += pDetail->fx[56] * temp ; pDetail->ddZdD += pDetail->fx[57] * temp ; pDetail->ddZdD *= pDetail->dKp3 ; return pDetail->ddZdD; } /************************************************************************** * 函数: Detail::relativedensity() * 参数: AGA10STRUCT * * 返回: void * 目的: 通过AGA 8中列出的方法计算相对密度 * 修订: **************************************************************************/ void Detail_relativedensity(Detail* pDetail,AGA10STRUCT *ptAGA10) { double dBX, dZa; const double dMWair = 28.96256; // 计算空气的第二维里系数 dBX = -0.12527 + 5.91e-4 * ptAGA10->dTb - 6.62e-7 * ptAGA10->dTb * ptAGA10->dTb; // 计算空气的压缩系数 dZa = 1.0 + (dBX * pDetail->dP) / (RGASKJ * ptAGA10->dTb); // 计算理想气体和真实气体的相对密度 ptAGA10->dRD_Ideal = ptAGA10->dMrx / dMWair; ptAGA10->dRD_Real = ptAGA10->dRD_Ideal * (dZa / ptAGA10->dZb); }