#include "NGCal.h" #include "Therm.h" #include "Detail.h" #include "FlowCal.h" void OFlowCal(FlowParSTRUCT * ptFlowPar,NGParSTRUCT * ptNGPar) { //大气压力转换成Pa double tempPatm = ptFlowPar->dPatm*1000000; //压力转换成Pa double tempPf = ptFlowPar->dPf*1000000; //差压转换成Pa double tempDP = ptFlowPar->dDp*1000; //温度转换成K double tempTf = ptFlowPar->dTf+273.15; if (ptFlowPar->dPfType == 0) //0是表压 { ptFlowPar->dPf = tempPatm + tempPf; ptNGPar ->dPf=tempPatm + tempPf; } else { ptFlowPar->dPf = tempPf; ptNGPar->dPf=tempPf; } ptFlowPar->dDp = tempDP; ptFlowPar->dTf = tempTf; ptNGPar->dTf = tempTf; ptNGPar->dCbtj=ptFlowPar->dCbtj; switch (ptNGPar->dCbtj) { case 2: ptNGPar->dPb=101325; ptNGPar->dTb= 273.15; ptFlowPar->dPb_M=(101325); ptFlowPar->dTb_M=(273.15); break; case 1: ptNGPar->dPb=(101325); ptNGPar->dTb=( 288.15); ptFlowPar->dPb_M=(101325); ptFlowPar->dTb_M=(288.15); break; case 0: ptNGPar->dPb=(101325); ptNGPar->dTb=( 293.15); ptFlowPar->dPb_M=(101325); ptFlowPar->dTb_M=(293.15); break; } double ngArray[NUMBEROFCOMPONENTS]; for (int i = 0; i dNG_Compents[i] / 100; ptNGPar->adMixture[i] = ngArray[i]; } Crit(ptNGPar,0); //计算天然气物性参数 //开始计算孔板流量 ptFlowPar->dFpv=ptNGPar->dFpv; // 1. 计算中间参数 ptFlowPar->dOrificeD = ptFlowPar->dOrificeD * (1 + 0.000001 * CaiLiaoPzxs(ptFlowPar->dOrificeMaterial) * (ptFlowPar->dTf - 293.15)); ptFlowPar->dPipeD = ptFlowPar->dPipeD * (1 + 0.000001 * CaiLiaoPzxs(ptFlowPar->dPipeMaterial) * (ptFlowPar->dTf - 293.15)); ptFlowPar->dBeta = ptFlowPar->dOrificeD / ptFlowPar->dPipeD; ptFlowPar->dE = calculateE(ptFlowPar->dBeta); ptFlowPar->dFG = calculateFG(ptNGPar->dRD_Real); ptFlowPar->dFT = calculateFT(ptFlowPar->dTb_M, ptFlowPar->dTf); ptFlowPar->dKappa = calculateKappa(ptNGPar->dZf); ptFlowPar->dDViscosity = Dlndjs(ptFlowPar->dPf/1e6, ptFlowPar->dTf); ptFlowPar->dDExpCoefficient = calculateEpsilon(ptFlowPar->dPf, ptFlowPar->dDp, ptFlowPar->dBeta, ptFlowPar->dKappa); double D = ptFlowPar->dPipeD / 1000.0; // 管道内径(m) double d = ptFlowPar->dOrificeD / 1000.0; // 孔板孔径(m) double beta = ptFlowPar->dBeta; double P1 = ptFlowPar->dPf; // 绝对压力(Pa) double deltaP = ptFlowPar->dDp; // 差压(Pa) double Tf = ptFlowPar->dTf; // 2. 初始雷诺数估算(假设初始C=0.6) double C_initial = 0.6; double Qf_initial = (C_initial * ptFlowPar->dE * ptFlowPar->dDExpCoefficient * M_PI * pow(d, 2) / 4) * sqrt(2 * deltaP / (ptNGPar->dRhof * (1 - pow(beta, 4)))); ptFlowPar->dVFlowf = Qf_initial; // 初始工况流量(m3/s) // 3. 迭代参数 double tolerance = 1e-6; int maxIter = 100; double currentC = C_initial; double currentReD = calculateReD(Qf_initial, D, ptNGPar->dRhof, ptFlowPar->dDViscosity); int iter = 0; double prevC = 0; // 4. 迭代循环 do { prevC = currentC; // 4.1 计算流出系数C(GB/T 21446-2008 附录A) currentC = calculateCd(beta, currentReD, ptFlowPar->dPipeD, ptFlowPar->dPtmode); // 4.2 更新流量 double Qf = (currentC * ptFlowPar->dDExpCoefficient * M_PI * pow(d, 2) / 4) * sqrt(2 * deltaP / (ptNGPar->dRhof * (1 - pow(beta, 4)))); ptFlowPar->dVFlowf = Qf; // 4.3 更新雷诺数 currentReD = calculateReD(Qf, D, ptNGPar->dRhof, ptFlowPar->dDViscosity); iter++; if (iter > maxIter) { fprintf(stderr, "迭代未收敛,超过最大迭代次数!\n"); } } while (fabs(currentC - prevC) / currentC > tolerance); // 5. 保存最终结果 // 在迭代计算流出系数后,添加粗糙度修正 double K = calculateK(ptFlowPar->dPipeType); // 根据实际管道类型选择 double G_me = calculateRoughnessFactor(ptFlowPar->dPipeD, K, currentC); double C_corrected = currentC * G_me; ptFlowPar->dCd = C_corrected; ptFlowPar->dRoughNessPipe = G_me; ptFlowPar->dRnPipe = currentReD; // 6. 计算标况流量(GB/T 21446-2008 式(1)) double Qn = ptFlowPar->dVFlowf * (ptFlowPar->dFpv * ptFlowPar->dFpv * P1 / ptFlowPar->dPb_M) * (ptFlowPar->dTb_M) / Tf; ptFlowPar->dVFlowb = Qn; // 标况质量流量 ptFlowPar->dMFlowb = ptFlowPar->dVFlowb * ptNGPar->dRhob; // 标况能量流量 ptFlowPar->dEFlowb = ptFlowPar->dVFlowb * ptNGPar->dHhvMol; // 管道内天然气流速 ptFlowPar->dVelocityFlow = ptFlowPar->dVFlowf / (M_PI * pow((ptFlowPar->dPipeD / 2000), 2)); } /// /// 材料膨胀系数计算 /// /// /// double CaiLiaoPzxs(int tempCaiLiao) { double CaiLiaoPzxs = 0; // 孔板和管道材料的膨胀系数 // 0 A3、15号钢 // 1 10 号钢 // 2 20 号钢 // 3 45 号钢 // 4 1 Cr13?2Cr13 // 5 Cr17 // 6 12 CrMoV // 7 10 CrMo910 // 8 Cr6SiMo // 9 X20CrMoV121 // 10 1 Cr18Ni9Ti // 11 普通碳钢 // 12 工业用铜 // 13 黄铜 // 14 红铜 switch (tempCaiLiao) { case 0: CaiLiaoPzxs = 11.75; break; case 1: CaiLiaoPzxs = 11.6; break; case 2: CaiLiaoPzxs = 11.16; break; case 3: CaiLiaoPzxs = 11.59; break; case 4: CaiLiaoPzxs = 10.5; break; case 5: CaiLiaoPzxs = 10.0; break; case 6: CaiLiaoPzxs = 10.2; break; case 7: CaiLiaoPzxs = 15.5; break; case 8: CaiLiaoPzxs = 11.5; break; case 9: CaiLiaoPzxs = 10.8; break; case 10: CaiLiaoPzxs = 16.6; break; case 11: CaiLiaoPzxs = 11.4; break; case 12: CaiLiaoPzxs = 16.55; break; case 13: CaiLiaoPzxs = 17.8; break; case 14: CaiLiaoPzxs = 17.2; break; } return CaiLiaoPzxs; } /** * 计算管道绝对粗糙度 K (GB/T 21446-2008 附录C) * @param dPipeType 管道类型 * @return 粗糙度修正系数 K (保留4位小数) */ double calculateK(int dPipeType) { double Jdccd; switch (dPipeType) { case 0: Jdccd = 0.029; break; case 1: case 2: case 3: Jdccd = 0.075; break; case 4: Jdccd = 0.1; break; case 5: Jdccd = 0.15; break; case 6: Jdccd = 1; break; case 7: Jdccd = 2.1; break; case 8: Jdccd = 0.04; break; case 9: Jdccd = 0.15; break; case 10: Jdccd = 0.13; break; case 11: Jdccd = 0.25; break; default: // 处理未知类型(可选) fprintf(stderr, "未知的管道类型: %d\n", dPipeType); return FLOW_CALC_ERROR; } return Jdccd; } /** * 计算管道粗糙度修正系数 G_me (GB/T 21446-2008 附录C) * @param D_pipe 管道内径 (mm) * @param K 绝对粗糙度 (mm) * @param C 未修正的流出系数 * @return 粗糙度修正系数 G_me (保留4位小数) */ double calculateRoughnessFactor(double D_pipe, double K, double C) { // 计算相对粗糙度 K/D double K_over_D = K / D_pipe; // 判断是否需要修正 if (K_over_D <= 0.0004) { return 1.0000; } // 计算修正项 double term = (K_over_D * 1e6) - 400; // 转换为无量纲项 if (term < 0) { fprintf(stderr, "K/D 超出修正公式适用范围\n"); return FLOW_CALC_ERROR; } double G_me = 1 + (0.011 / C) * sqrt(term); return G_me; // 保留四位小数 } /** * 计算渐近速度系数E(GB/T 21446-2008 式(8)) * @param beta 直径比 * @return 渐近速度系数E */ double calculateE(double beta) { return 1 / sqrt(1 - pow(beta, 4)); } /** * 计算相对密度系数FG(GB/T 21446-2008 式(9)) * @param dRD_Real 真实相对密度 * @return 相对密度系数FG */ double calculateFG(double dRD_Real) { return 1 / sqrt(dRD_Real); } /** * 计算流动温度系数FT(GB/T 21446-2008 式(10)) * @param dTb_M 参比温度(K) * @param dTf 工况温度(K) * @return 流动温度系数FT */ double calculateFT(double dTb_M, double dTf) { return sqrt(dTb_M / dTf); } /** * 计算可膨胀系数ε(GB/T 21446-2008 式(11)) * @param dPf 上游绝对压力(Pa) * @param dDp 差压(Pa) * @param beta 直径比 * @param dKappa 等熵指数 * @return 可膨胀系数ε */ double calculateEpsilon(double dPf, double dDp, double beta, double dKappa) { double tau = (dPf - dDp) / dPf; // 压力比 double epsilon = 1 - (0.351 + 0.256 * pow(beta, 4) + 0.93 * pow(beta, 8)) * (1 - pow(tau, 1/dKappa)); return epsilon; } /** * 计算等熵指数κ(GB/T 21446-2008 推荐方法) * @param dZf 工况压缩因子 * @return 等熵指数κ */ double calculateKappa(double dZf) { // 近似公式:基于理想气体比热比和压缩因子修正 double gamma = 1.3; // 天然气典型比热比(Cp/Cv≈1.3) double Z = dZf; // 工况压缩因子 // 修正公式(经验关系) double kappa = gamma / (1 - (gamma - 1) * (1 / Z - 1)); return kappa; } /** * 计算雷诺数ReD(GB/T 21446-2008 式(5)) * @param Qf 工况流量(m3/s) * @param D 管道内径(m) * @param rho 密度(kg/m3) * @param mu 动力粘度(Pa·s) * @return 雷诺数 */ double calculateReD(double Qf, double D, double rho, double mu) { return (4 * Qf * rho) / (M_PI * D * mu); } /** * 计算流出系数C(GB/T 21446-2008 附录A) * @param beta 直径比 * @param ReD 雷诺数 * @param D_mm 管道内径(mm) * @param ptMode 取压方式 * @return 流出系数C */ double calculateCd(double beta, double ReD, double D_mm, int ptMode) { double L1, L2; // 根据取压方式确定L1/L2(角接取压) switch (ptMode) { case 1: // 角接取压 L1 = L2 = 0; // D单位为mm break; case 0: // 法兰取压 L1 = L2 = 25.4 / D_mm; break; case 2: // D-D/2取压 L1 = 1.0; L2 = 0.47; break; default: fprintf(stderr, "不支持的取压方式: %d\n", ptMode); return FLOW_CALC_ERROR; } double term1 = 0.5961 + 0.0261 * pow(beta, 2) - 0.216 * pow(beta, 8); double term2 = 0.000521 * pow(1e6 * beta / ReD, 0.7); double A = pow(19000 * beta / ReD, 0.8); double term3 = (0.0188 + 0.0063 * A) * pow(beta, 3.5) * pow(1e6 / ReD, 0.3); double term4 = (0.043 + 0.08 * exp(-10 * L1) - 0.123 * exp(-7 * L1)) * (1 - 0.11 * A) * pow(beta, 4) / (1 - pow(beta, 4)); double term5 = -0.031 * (2 * L2 / (1 - beta) - 0.8 * pow(2 * L2 / (1 - beta), 1.1)) * pow(beta, 1.3); double Cd = term1 + term2 + term3 + term4 + term5; // 孔径<71.12mm修正 if (D_mm < 71.12) { Cd += 0.011 * (0.75 - beta) * (2.8 - D_mm / 25.4); } return Cd; } /** * 查表计算粘度μ * @param tempP_jy 压力(MPa) * @param tempT 温度(K) * @return 动力粘度(Pa·s) */ double Dlndjs(double tempP_jy, double tempT) { double Dlndjs_Dlnd_Data[8][11] = { {976, 991, 1014, 1044, 1073, 1114, 1156, 1207, 1261, 1331, 1405}, {1027, 1040, 1063, 1091, 1118, 1151, 1185, 1230, 1276, 1331, 1389}, {1071, 1082, 1106, 1127, 1149, 1180, 1211, 1250, 1289, 1335, 1383}, {1123, 1135, 1153, 1174, 1195, 1224, 1253, 1289, 1324, 1366, 1409}, {1167, 1178, 1196, 1216, 1236, 1261, 1287, 1318, 1350, 1385, 1421}, {1213, 1224, 1239, 1257, 1275, 1297, 1320, 1346, 1373, 1403, 1435}, {1260, 1270, 1281, 1297, 1313, 1333, 1352, 1374, 1396, 1424, 1451}, {1303, 1312, 1323, 1338, 1352, 1372, 1391, 1412, 1432, 1456, 1482} }; double Dlndjs_Dlnd_T[8] = { -15 + 273.15, 0 + 273.15, 15 + 273.15, 30 + 273.15, 45 + 273.15, 60 + 273.15, 75 + 273.15, 90 + 273.15 }; double Dlndjs_Dlnd_P[11] = {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; double s1, s2, ky, kx; int i, m = 0, n = 0; if (tempT < Dlndjs_Dlnd_T[0]) { tempT = Dlndjs_Dlnd_T[0]; } if (tempT > Dlndjs_Dlnd_T[7]) { tempT = Dlndjs_Dlnd_T[7]; } if (tempP_jy < Dlndjs_Dlnd_P[0]) { tempP_jy = Dlndjs_Dlnd_P[0]; } if (tempP_jy > Dlndjs_Dlnd_P[10]) { tempP_jy = Dlndjs_Dlnd_P[10]; } for (i = 0; i <= 6; i++) { if (tempT >= Dlndjs_Dlnd_T[i] && tempT <= Dlndjs_Dlnd_T[i + 1]) { m = i; break; } } for (i = 0; i <= 9; i++) { if (tempP_jy >= Dlndjs_Dlnd_P[i] && tempP_jy <= Dlndjs_Dlnd_P[i + 1]) { n = i; break; } } if (Dlndjs_Dlnd_P[n + 1] - Dlndjs_Dlnd_P[n] != 0) { ky = (tempP_jy - Dlndjs_Dlnd_P[n]) / (Dlndjs_Dlnd_P[n + 1] - Dlndjs_Dlnd_P[n]); } else { ky = 0; } if (Dlndjs_Dlnd_T[m + 1] - Dlndjs_Dlnd_T[m] != 0) { kx = (tempT - Dlndjs_Dlnd_T[m]) / (Dlndjs_Dlnd_T[m + 1] - Dlndjs_Dlnd_T[m]); } else { kx = 0; } s1 = Dlndjs_Dlnd_Data[m][n] + (Dlndjs_Dlnd_Data[m][n + 1] - Dlndjs_Dlnd_Data[m][n]) * ky; s2 = Dlndjs_Dlnd_Data[m + 1][n] + (Dlndjs_Dlnd_Data[m + 1][n + 1] - Dlndjs_Dlnd_Data[m + 1][n]) * ky; return (s1 + (s2 - s1) * kx) / 100000.0; }